1
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Hasan R, Zhao Z, Li Y, Liu Y, Zhang Y, Cheng K. Small extracellular vesicles (sEVs) in pancreatic cancer progression and diagnosis. J Control Release 2025; 380:269-282. [PMID: 39889882 DOI: 10.1016/j.jconrel.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with poor prognostic outcomes, necessitating the exploration of novel biomarkers and therapeutic targets for early detection and effective treatment. Small extracellular vesicles (sEVs) secreted by cells, have gained considerable attention in cancer research due to their role in intercellular communication and their potential as non-invasive biomarkers. This review focuses on the role of sEVs in the progression of pancreatic cancer and their application as biomarkers. We delve into the biogenesis, composition, and functional implications of sEVs in pancreatic tumor biology, emphasizing their involvement in processes such as tumor growth, metastasis, immune modulation, and chemotherapy resistance. In addition, we discuss the challenges in isolating and characterizing sEVs. The review also highlights recent advances in the utilization of sEV-derived biomarkers for the early diagnosis, prognosis, and monitoring of pancreatic cancer. By synthesizing the latest findings, we aim to underscore the significance of sEVs in pancreatic cancer and their potential to revolutionize patient management through improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
3
|
Wang Q, Ling S, Lv J, Wu L. circ-ZEB1 Enhances NSCLC Metastasis and Proliferation by Modulating the miR-491-5p/EIF5A Axis. Anal Cell Pathol (Amst) 2025; 2025:5595692. [PMID: 39802932 PMCID: PMC11724732 DOI: 10.1155/ancp/5595692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Circular RNAs (circRNAs), covalently closed single-stranded RNAs, have been implicated in cancer progression. A previous investigation revealed that circ-ZEB1 is expressed abnormally in liver cancer. However, the roles of circ-ZEB1 in non-small cell lung cancer (NSCLC) are unknown. Methods: In this study, we used fluorescence in situ hybridization (FISH) and RT-qPCR to study circ-ZEB1 expression in NSCLC cells and tissues. A luciferase reporter assay was performed to validate downstream targets of circ-ZEB1. Transwell migration, 5-ethynyl-20-deoxyuridine (EdU), and cell counting kit-8 (CCK8) assays were performed to assess proliferation and migration. In vivo metastasis and tumorigenesis assays were also performed to investigate circ-ZEB1 functions during NSCLC. Results: Our results showed that circ-ZEB1 expression was increased in NSCLC tissues and cells. circ-ZEB1 downregulation suppressed NSCLC cell proliferation as well as migration in vitro and in vivo. Luciferase data confirmed EIF5A and miR-491-5p as downstream targets of circ-ZEB1. EIF5A overexpression and miR-491-5p suppression reversed NSCLC cell migration post circ-ZEB1 silencing. Conclusion: Our collective findings advised that circ-ZEB1 takes part in the malignant progression through regulating the miR-491-5p/EIF5A axis, highlighting its potential as an effective NSCLC therapeutic target.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shengying Ling
- Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia Lv
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Lina Wu
- Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen X, He L, Zhong H, Yan C, Ke B, Shi L. The suppression of OTUD7B by miR-491-5p enhances the ubiquitination of VEGFA to suppress vascular mimicry in non-small cell lung cancer. J Gene Med 2024; 26:e3743. [PMID: 39376029 DOI: 10.1002/jgm.3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the main type of lung cancer with high morbidity and mortality. Vascular mimicry (VM), a distinct microcirculation model in tumors that differs from classical angiogenesis, is strongly associated with poor clinical outcomes in cancer patients. miR-491-5p has been reported to prevent NSCLC progression, including proliferation, metastasis, and angiogenesis. However, the effect and mechanism of miR-491-5p on VM have not been studied in NSCLC. METHODS The expression of miR-491-5p was detected by quantitative reverse transcription PCR (qPCR) and fluorescence in situ hybridization (FISH). Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining assays were used to examine cell growth. Tube formation assay was used to assess VM in NSCLC cells. Immunohistochemistry (IHC) and western blot were performed to detect protein expression. Immunoprecipitation was used to confirm the interaction between OTU deubiquitinase 7B (OTUD7B) and vascular endothelial growth factor A (VEGFA), and the level of ubiquitinated VEGFA. A nude mouse tumorigenesis model was used to evaluate the carcinogenic capacity of NSCLC cells in vivo. Luciferase reporter assay was used to identify the potential target of miR-491-5p. RESULTS MiR-491-5p was found downregulated in NSCLC tissues, and miR-491-5p deficiency was strongly associated with angiogenesis. miR-491-5p mimics suppressed cell viability, migration, and VM. Conversely, an inhibitor of miR-491-5p had the opposite effect. OTUD7B, a deubiquitinase, was identified as a downstream target of miR-491-5p. A luciferase reporter assay indicated that miR-491-5p directly binds to the 3'UTR of OTUD7B. Moreover, mimics of miR-491-5p caused a significant reduction in the OTUD7B protein in NSCLC cells, and an inhibitor of miR-491-5p stabilized the OTUD7B protein. In addition, overexpression of OTUD7B promoted cell proliferation, migration, and VM, similar to the effects of an inhibitor of miR-491-5p. Further exploration revealed that OTUD7B interacts with VEGFA and that the miR-491-5p-OTUD7B axis modulates the ubiquitination of VEGFA. The rescue experiment indicated that OTUD7B compromised the inhibitory effects of miR-491-5p on the cellular function of NSCLC cells. CONCLUSIONS Overall, our study first proved that miR-491-5p impedes VM by suppressing OUTD7B and promoting the ubiquitination of VEGFA. The miR-491-5p/OTUD7B axis may be a novel target for antiangiogenic therapy in NSCLC.
Collapse
Affiliation(s)
- Xiaofei Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun He
- Dongguan Humen Hospital, Dongguan, Guangdong, China
| | - Hai Zhong
- Department of Thoracic Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Chenxin Yan
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Ke
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Jiang Y, Ye Y, Huang Y, Wu Y, Wang G, Gui Z, Zhang M, Zhang M. Identification and validation of a novel anoikis-related long non-coding RNA signature for pancreatic adenocarcinoma to predict the prognosis and immune response. J Cancer Res Clin Oncol 2023; 149:15069-15083. [PMID: 37620430 DOI: 10.1007/s00432-023-05285-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE To provide more precise treatment options for pancreatic adenocarcinoma (PAAD) patients and improve their prognosis,we established a novel anoikis-related long non-coding RNA signature (ARLSig) to predict the prognosis and immune response for PAAD patients. METHODS We downloaded information on PAAD from The Cancer Genome Atlas (TCGA) database, and screened long non-coding RNA (lncRNA) linked with anoikis, and prognostic signatures with these lncRNAs. After that, ARLSig was verified using receiver operating characteristic (ROC) and C-index curves. To further investigate the role of ARLSig, we also performed enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Additionally, using immunological correlation analysis and single-sample genetic enrichment analysis, we investigated the effectiveness of PAAD immunotherapy. RESULTS We screened 7 lncRNAs to construct a novel ARLSig and utilized it to predict the efficacy of immunotherapy and the prognosis of PAAD patients. CONCLUSION ARLSig can identify patients who will benefit from immunotherapy and improve the prediction of PAAD patient prognosis.
Collapse
Affiliation(s)
- Yue Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yi Huang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mengmeng Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affifiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- The Traditional and Western Medicine (TCM)- Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China.
- Anhui University of Traditional Chinese Medicine, Hefei, 230022, China.
| |
Collapse
|
6
|
Extracellular Vesicle-Loaded Oncogenic lncRNA NEAT1 from Adipose-Derived Mesenchymal Stem Cells Confers Gemcitabine Resistance in Pancreatic Cancer via miR-491-5p/Snail/SOCS3 Axis. Stem Cells Int 2023; 2023:6510571. [PMID: 36762032 PMCID: PMC9902843 DOI: 10.1155/2023/6510571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
It is becoming increasingly evident that key mechanisms of mesenchymal stem cell (MSC) efficacy appear to associate with paracrine activities, and the delivery of cargos through extracellular vesicles (EVs) controls the mechanistic actions of MSCs. Thus, this study clarified a possible mechanism by which EV-encapsulated NEAT1 from adipose-derived mesenchymal stem cells (ADSCs) might mediate gemcitabine resistance in pancreatic cancer (PCa). Microarray profile suggested a differentially expressed lncRNA NEAT1 in PCa, and we determined its expression in PCa cells. NEAT1 was found to be upregulated in PCa. The binding affinity among NEAT1, miR-491-5p, and Snail was identified through bioinformatic analysis and experimental validation. NEAT1 competitively bound to miR-491-5p to elevate Snail expression and diminish SOCS3 expression. PCa cells were cocultured with EVs extracted from ADSCs, followed by assessment of malignant phenotypes, tumorigenesis, and gemcitabine resistance of PCa cells using gain- or loss-of-function experiments. ADSC-derived EVs carrying NEAT1 promoted PCa cell proliferation, migration, and gemcitabine resistance in vitro and enhanced tumorigenicity in vivo by inhibiting miR-491-5p and SOCS3 and upregulating Snail. Collectively, the findings from our study found a new potential strategy for gemcitabine resistance in PCa by illustrating the mechanistic insights of oncogenic ADSC-derived EVs-loaded NEAT1 via regulating the miR-491-5p/Snail/SOCS3 axis.
Collapse
|
7
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:2448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Sadri F, Hosseini SF, Aghayei A, Fereidouni M, Rezaei Z. The Tumor Suppressor Roles and Mechanisms of MiR-491 in Human Cancers. DNA Cell Biol 2022; 41:810-823. [PMID: 35914029 DOI: 10.1089/dna.2022.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that bind to the 3' untranslated region (3'' UTR) of target mRNAs to control gene expression post-transcriptionally. Recent indications have highlighted their important roles in a variety of pathophysiological conditions as well as human malignancies. Dysregulated miRNAs act as tumor suppressor genes or oncogenes in a variety of cancers. MiR-491 has been shown to have a major effect on tumorigenesis in multiple malignancies through binding to specific genes and signaling cascades, thereby preventing cancer progression. This review provides an overview of miR-491 expression in regulatory mechanisms and biological procedures of tumor cells, as well as the prospective possible treatment effects of various types of human cancers.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyede Fatemeh Hosseini
- Department of Nursing, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Atena Aghayei
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Mohammad Fereidouni
- Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.,Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
10
|
Du P, Chai Y, Zong S, Yue J, Xiao H. Identification of a Prognostic Model Based on Fatty Acid Metabolism-Related Genes of Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:888764. [PMID: 35846149 PMCID: PMC9280184 DOI: 10.3389/fgene.2022.888764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
The fatty acid metabolism (FAM) is known to impact tumorigenesis, tumor progression and treatment resistance via enhancing lipid synthesis, storage and catabolism. However, the role of FAM in head and neck squamous cell carcinoma (HNSCC) has remained elusive. In the present study, we obtained a total of 69 differentially expressed FAM-related genes between 502 HNSCC samples and 44 normal samples from The Cancer Genome Atlas (TCGA) database. The HNSCC samples were divided into 2 clusters according to 69 differentially expressed genes (DEGs) via cluster analysis. Then DEGs in the two clusters were found, and 137 prognostic DEGs were identified by univariate analysis. Subsequently, combined with the clinical information of 546 HNSCC patients from TCGA database, a 12-gene prognostic risk model was established (FEPHX3, SPINK7, FCRLA, MASP1, ZNF541, CD5, BEST2 and ZAP70 were down-regulation, ADPRHL1, DYNC1I1, KCNG1 and LINC00460 were up-regulation) using multivariate Cox regression and LASSO regression analysis. The risk scores of 546 HNSCC samples were calculated. According to the median risk score, 546 HNSCC patients were divided into the high- and low-risk (high- and low score) groups. The Kaplan-Meier survival analysis showed that the survival time of HNSCC patients was significantly shorter in the high-risk group than that in the low-risk group (p < 0.001). The same conclusion was obtained in the Gene Expression Omnibus (GEO) dataset. After that, the multivariate Cox regression analysis indicated that the risk score was an independent factor for patients with HNSCC in the TCGA cohort. In addition, single-sample gene set enrichment analysis (ssGSEA) indicated that the level of infiltrating immune cells was relatively low in the high-risk group compared with the low-risk group. In summary, FAM-related gene expression-based risk signature could predict the prognosis of HNSCC independently.
Collapse
Affiliation(s)
- Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chai
- Department of Medical Oncology, National Cancer Cente, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxin Yue
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| |
Collapse
|
11
|
Chen X, Song J, Wang X, Sun D, Liu Y, Jiang Y. LncRNA LINC00460: Function and mechanism in human cancer. Thorac Cancer 2022; 13:3-14. [PMID: 34821482 PMCID: PMC8720622 DOI: 10.1111/1759-7714.14238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length and with limited protein-coding potential, play vital roles in the pathogenesis, tumorigenesis, and angiogenesis of cancers. Aberrant expression of lncRNAs has been detected in various carcinomas and may be correlated with oncogenesis by affecting related genes expression. Recently, an increasing number of studies have reported on long intergenic non-protein coding RNA 460 (LINC00460) in human tumor fields. LINC00460 is upregulated in diverse cancer tissues and cells. The upregulated expression level of LINC00460 is correlated with larger tumor size, tumor node metastasis (TNM) stage, lymph node metastasis, and shorter overall survival. The regulatory mechanism of LINC00460 was complex and diverse. LINC00460 could act as a competitive endogenous RNA (ceRNA), directly bind with proteins or regulate multiple pathways, which affected tumor progression. Moreover, LINC00460 was also identified to increase drug resistance, and therefore, weaken the effectiveness of tumor treatment. It has become increasingly important to investigate the roles of LINC00460 in various cancers by different mechanisms. Therefore, a more comprehensive understanding of LINC00460 is crucial to expound on the cellular function and molecular mechanism of human cancers. In this review, we refer to studies concerning LINC00460 and provide the basis for the evaluation of LINC00460 as a predicted biomarker or potential therapeutic target in malignancies, and also provide ideas for the future research of lncRNAs similar to LINC00460.
Collapse
Affiliation(s)
- Xi Chen
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
| | - Jiwu Song
- Department of StomatologyWeifang People's Hospital, First Affiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Xiaoxiao Wang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Dongyuan Sun
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yunxia Liu
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yingying Jiang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| |
Collapse
|
12
|
Heredia-Soto V, Rodríguez-Salas N, Feliu J. Liquid Biopsy in Pancreatic Cancer: Are We Ready to Apply It in the Clinical Practice? Cancers (Basel) 2021; 13:1986. [PMID: 33924143 PMCID: PMC8074327 DOI: 10.3390/cancers13081986] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits the poorest prognosis of all solid tumors, with a 5-year survival of less than 10%. To improve the prognosis, it is necessary to advance in the development of tools that help us in the early diagnosis, treatment selection, disease monitoring, evaluation of the response and prognosis. Liquid biopsy (LB), in its different modalities, represents a particularly interesting tool for these purposes, since it is a minimally invasive and risk-free procedure that can detect both the presence of genetic material from the tumor and circulating tumor cells (CTCs) in the blood and therefore distantly reflect the global status of the disease. In this work we review the current status of the main LB modalities (ctDNA, exosomes, CTCs and cfRNAs) for detecting and monitoring PDAC.
Collapse
Affiliation(s)
- Victoria Heredia-Soto
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Nuria Rodríguez-Salas
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Jaime Feliu
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|