1
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Flynn LL, Mitrpant C, Adams A, Pitout IL, Stirnweiss A, Fletcher S, Wilton SD. Targeted SMN Exon Skipping: A Useful Control to Assess In Vitro and In Vivo Splice-Switching Studies. Biomedicines 2021; 9:552. [PMID: 34069072 PMCID: PMC8156830 DOI: 10.3390/biomedicines9050552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
The literature surrounding the use of antisense oligonucleotides continues to grow, with new disease and mechanistic applications constantly evolving. Furthermore, the discovery and advancement of novel chemistries continues to improve antisense delivery, stability and effectiveness. For each new application, a rational sequence design is recommended for each oligomer, as is chemistry and delivery optimization. To confirm oligomer delivery and antisense activity, a positive control AO sequence with well characterized target-specific effects is recommended. Here, we describe splice-switching antisense oligomer sequences targeting the ubiquitously expressed human and mouse SMN and Smn genes for use as control AOs for this purpose. We report two AO sequences that induce targeted skipping of SMN1/SMN2 exon 7 and two sequences targeting the Smn gene, that induce skipping of exon 5 and exon 7. These antisense sequences proved effective in inducing alternative splicing in both in vitro and in vivo models and are therefore broadly applicable as controls. Not surprisingly, we discovered a number of differences in efficiency of exon removal between the two species, further highlighting the differences in splice regulation between species.
Collapse
Affiliation(s)
- Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- Black Swan Pharmaceuticals, Wake Forest, NC 27587, USA
| | - Chalermchai Mitrpant
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Abbie Adams
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | | | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Chan L, Yokota T. Development and Clinical Applications of Antisense Oligonucleotide Gapmers. Methods Mol Biol 2021; 2176:21-47. [PMID: 32865780 DOI: 10.1007/978-1-0716-0771-8_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-like molecules called antisense oligonucleotides have opened new treatment possibilities for genetic diseases by offering a method of regulating gene expression. Antisense oligonucleotides are often used to suppress the expression of mutated genes which may interfere with essential downstream pathways. Since antisense oligonucleotides have been introduced for clinical use, different chemistries have been developed to further improve efficacy, potency, and safety. One such chemistry is a chimeric structure of a central block of deoxyribonucleotides flanked by sequences of modified nucleotides. Referred to as a gapmer, this chemistry produced promising results in the treatment of genetic diseases. Mipomersen and inotersen are examples of recent FDA-approved antisense oligonucleotide gapmers used for the treatment of familial hypercholesterolemia and hereditary transthyretin amyloidosis, respectively. In addition, volanesorsen was conditionally approved in the EU for the treatment of adult patients with familial chylomicronemia syndrome (FCS) in 2019. Many others are being tested in clinical trials or under preclinical development. This chapter will cover the development of mipomersen and inotersen in clinical trials, along with advancement in gapmer treatments for cancer, triglyceride-elevating genetic diseases, Huntington's disease, myotonic dystrophy, and prion diseases.
Collapse
Affiliation(s)
- Leanna Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Wilton SD, Veedu RN, Fletcher S. The emperor's new dystrophin: finding sense in the noise. Trends Mol Med 2015; 21:417-26. [PMID: 26051381 DOI: 10.1016/j.molmed.2015.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/16/2023]
Abstract
Targeted dystrophin exon removal is a promising therapy for Duchenne muscular dystrophy (DMD); however, dystrophin expression in some reports is not supported by the associated data. As in the account of 'The Emperor's New Clothes', the validity of such claims must be questioned, with critical re-evaluation of available data. Is it appropriate to report clinical benefit and induction of dystrophin as dose dependent when the baseline is unclear? The inability to induce meaningful levels of dystrophin does not mean that dystrophin expression as an end point is irrelevant, nor that induced exon skipping as a strategy is flawed, but demands that drug safety and efficacy, and study parameters be addressed, rather than questioning the strategy or the validity of dystrophin as a biomarker.
Collapse
Affiliation(s)
- S D Wilton
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia.
| | - R N Veedu
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| | - S Fletcher
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| |
Collapse
|
5
|
Koo T, Wood MJ. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 2013; 24:479-88. [PMID: 23521559 DOI: 10.1089/hum.2012.234] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the DMD gene, affecting 1 in 3500 newborn males. Complete loss of muscle dystrophin protein causes progressive muscle weakness and heart and respiratory failure, leading to premature death. Antisense oligonucleotides (AONs) that bind to complementary sequences of the dystrophin pre-mRNA to induce skipping of the targeted exon by modulating pre-mRNA splicing are promising therapeutic agents for DMD. Such AONs can restore the open reading frame of the DMD gene and produce internally deleted, yet partially functional dystrophin protein isoforms in skeletal muscle. Within the last few years, clinical trials using AONs have made considerable progress demonstrating the restoration of functional dystrophin protein and acceptable safety profiles following both local and systemic delivery in DMD patients. However, improvement of AON delivery and efficacy, along with the development of multiple AONs to treat as many DMD patients as possible needs to be addressed for this approach to fulfill its potential. Here, we review the recent progress made in clinical trials using AONs to treat DMD and discuss the current challenges to the development of AON-based therapy for DMD.
Collapse
Affiliation(s)
- Taeyoung Koo
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
6
|
Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts. Mol Ther 2012; 20:2134-42. [PMID: 22968481 DOI: 10.1038/mt.2012.178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Exon skipping has been demonstrated to be a successful strategy for the gene therapy of Duchenne muscular dystrophy (DMD): the rational being to convert severe Duchenne forms into milder Becker ones. Here, we show the selection of U1 snRNA-antisense constructs able to confer effective rescue of dystrophin synthesis in a Δ44 Duchenne genetic background, through skipping of exon 45; moreover, we demonstrate that the resulting dystrophin is able to recover timing of myogenic marker expression, to relocalize neuronal nitric oxide synthase (nNOS) and to rescue expression of miRNAs previously shown to be sensitive to the Dystrophin-nNOS-HDAC2 pathway. Becker mutations display different phenotypes, likely depending on whether the shorter protein is able to reconstitute the wide range of wild-type functions. Among them, efficient assembly of the dystrophin-associated protein complex (DAPC) and nNOS localization are important. Comparing different Becker deletions we demonstrate the correlation between the ability of the mutant dystrophin to relocalize nNOS and the expression levels of two miRNAs, miR-1 and miR29c, known to be involved in muscle homeostasis and to be controlled by the Dys-nNOS-HDAC2 pathway.
Collapse
|
7
|
Adkin C, Fletcher S, Wilton SD. Optimizing splice-switching oligomer sequences using 2'-O-methyl phosphorothioate chemistry. Methods Mol Biol 2012; 867:169-88. [PMID: 22454061 DOI: 10.1007/978-1-61779-767-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We have taken an empirical approach in designing splice-switching oligomers to induce targeted dystrophin exon skipping. The nucleotide sequence of the exon under examination is first analyzed for potential exon recognition motifs and then a set of oligomers complementary to the acceptor and donor splice sites, as well as intra-exonic regions predicted to contain exon splice enhancers, are designed and synthesized as 2'-O-methyl-modified bases on a phosphorothioate backbone (2OMeAOs). The 2OMeAOs can be readily transfected into cultured normal myogenic cells as cationic lipoplexes, and are incubated for 24 h before total RNA extraction and subsequent analysis by semi-quantitative RT-PCR. The amplification conditions used for each dystrophin transcript region under investigation minimize preferential production of shorter amplicons and do not exaggerate the level of induced RT-PCR products, compared to the endogenous dystrophin transcript product. It is imperative that the test oligomers are transfected over a range of concentrations and that the target exon is excised in a reproducible and dose-dependent manner.Once it has been demonstrated that an oligomer can induce some degree of exon skipping, that target region of the pre-mRNA is assumed to be involved in splicing of the exon. A series of overlapping oligomers are prepared and evaluated by transfection into normal myogenic cells at lower concentrations to identify the more effective compounds. Clinical application requires antisense compounds that efficiently modulate splicing at low dosages, delivering the greatest benefits in terms of efficacy, safety, and cost.
Collapse
Affiliation(s)
- Carl Adkin
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
8
|
Vanderplanck C, Ansseau E, Charron S, Stricwant N, Tassin A, Laoudj-Chenivesse D, Wilton SD, Coppée F, Belayew A. The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One 2011; 6:e26820. [PMID: 22053214 PMCID: PMC3203905 DOI: 10.1371/journal.pone.0026820] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/03/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is linked to deletions in 4q35 within the D4Z4 repeat array in which we identified the double homeobox 4 (DUX4) gene. We found stable DUX4 mRNAs only derived from the most distal D4Z4 unit and unexpectedly extended to the flanking pLAM region that provided an intron and a polyadenylation signal. DUX4 encodes a transcription factor expressed in FSHD but not control primary myoblasts or muscle biopsies. The DUX4 protein initiates a large transcription deregulation cascade leading to muscle atrophy and oxidative stress, which are FSHD key features. METHODOLOGY/PRINCIPAL FINDINGS We now show that transfection of myoblasts with a DUX4 expression vector leads to atrophic myotube formation associated with the induction of E3 ubiquitin ligases (MuRF1 and Atrogin1/MAFbx) typical of muscle atrophy. DUX4 induces expression of downstream targets deregulated in FSHD such as mu-crystallin and TP53. We developed specific siRNAs and antisense oligonucleotides (AOs) targeting the DUX4 mRNA. Addition of these antisense agents to primary FSHD myoblast cultures suppressed DUX4 protein expression and affected expression of the above-mentioned markers. CONCLUSIONS/SIGNIFICANCE These results constitute a proof of concept for the development of therapeutic approaches for FSHD targeting DUX4 expression.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cells, Cultured
- Down-Regulation/drug effects
- Gene Expression Regulation/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Models, Biological
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/metabolism
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Oligonucleotides, Antisense/pharmacology
- Phenotype
- RNA Interference/drug effects
- RNA Splicing/drug effects
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- SKP Cullin F-Box Protein Ligases/metabolism
- Transfection
- Tripartite Motif Proteins
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, University of Mons, Mons, Belgium
| | | | - Nadia Stricwant
- Laboratory of Molecular Biology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, University of Mons, Mons, Belgium
| | | | - Steve D. Wilton
- Molecular Genetic Therapy Group, University of Western Australia, Nedlands, Australia
| | | | | |
Collapse
|
9
|
Fragall CT, Adams AM, Johnsen RD, Kole R, Fletcher S, Wilton SD. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching. BMC MEDICAL GENETICS 2011; 12:141. [PMID: 22013876 PMCID: PMC3213239 DOI: 10.1186/1471-2350-12-141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022]
Abstract
Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.
Collapse
Affiliation(s)
- Clayton T Fragall
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley
| | | | | | | | | | | |
Collapse
|
10
|
Wilton SD, Fletcher S. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents. APPLICATION OF CLINICAL GENETICS 2011; 4:29-44. [PMID: 23776365 PMCID: PMC3681176 DOI: 10.2147/tacg.s8762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.
Collapse
Affiliation(s)
- Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, Australia
| | | |
Collapse
|
11
|
Rimessi P, Fabris M, Bovolenta M, Bassi E, Falzarano S, Gualandi F, Rapezzi C, Coccolo F, Perrone D, Medici A, Ferlini A. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy. Hum Gene Ther 2010; 21:1137-46. [PMID: 20486769 DOI: 10.1089/hum.2010.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antisense-mediated exon skipping has proven to be efficacious for subsets of Duchenne muscular dystrophy mutations. This approach is based on targeting specific splicing motifs that interfere with the spliceosome assembly by steric hindrance. Proper exon recognition by the splicing machinery is thought to depend on exonic splicing enhancer sequences, often characterized by purine-rich stretches, representing potential targets for antisense-mediated exon skipping. We identified and functionally characterized two purine-rich regions located within dystrophin intron 11 and involved in splicing regulation of a pseudo-exon. A functional role for these sequences was suggested by a pure intronic DMD deletion causing X-linked dilated cardiomyopathy through the prevalent cardiac incorporation of the aberrant pseudo-exon, marked as Alu-exon, into the dystrophin transcript. The first splicing sequence is contained within the pseudo-exon, whereas the second is localized within its 3' intron. We demonstrated that the two sequences actually behave as splicing enhancers in cell-free splicing assays because their deletion strongly interferes with the pseudo-exon inclusion. Cell-free results were then confirmed in myogenic cells derived from the patient with X-linked dilated cardiomyopathy, by targeting the identified motifs with antisense molecules and obtaining a reduction in dystrophin pseudo-exon recognition. The splicing motifs identified could represent target sequences for a personalized molecular therapy in this particular DMD mutation. Our results demonstrated for the first time the role of intronic splicing sequences in antisense modulation with implications in exon skipping-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Paola Rimessi
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dystrophin isoform induction in vivo by antisense-mediated alternative splicing. Mol Ther 2010; 18:1218-23. [PMID: 20332768 DOI: 10.1038/mt.2010.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Antisense oligomer-induced manipulation of dystrophin pre-mRNA processing can remove exons carrying mutations, or exclude exons flanking frameshifting mutations, and restore dystrophin expression in dystrophinopathy models and in Duchenne muscular dystrophy (DMD) patients. Splice intervention can also be used to manipulate the normal dystrophin pre-mRNA processing and ablate dystrophin expression in wild-type mice, with signs of pathology being induced in selected muscles within 4 weeks of commencing treatment. The disruption of normal dystrophin pre-mRNA processing to alter the reading frame can be very efficient and offers an alternative mechanism to RNA silencing for gene suppression. In addition, it is possible to remove in-frame exon blocks from the DMD gene transcript and induce specific dystrophin isoforms that retain partial functionality, without having to generate transgenic animal models. Specific exon removal to yield in-frame dystrophin transcripts will facilitate mapping of functional protein domains, based upon exon boundaries, and will be particularly relevant where there is either limited, or conflicting information as to the consequences of in-frame dystrophin exon deletions on the clinical severity and progression of the dystrophinopathy.
Collapse
|
13
|
Abstract
Duchenne muscular dystrophy (DMD), one of the most severe neuromuscular disorders of childhood, is caused by the absence of a functional dystrophin. Antisense oligomer (AO) induced exon skipping is being investigated to restore functional dystrophin expression in models of muscular dystrophy and DMD patients. One of the major challenges will be in the development of clinically relevant oligomers and exon skipping strategies to address many different mutations. Various models, including cell-free extracts, cells transfected with artificial constructs, or mice with a human transgene, have been proposed as tools to facilitate oligomer design. Despite strong sequence homology between the human and mouse dystrophin genes, directing an oligomer to the same motifs in both species does not always induce comparable exon skipping. We report substantially different levels of exon skipping induced in normal and dystrophic human myogenic cell lines and propose that animal models or artificial assay systems useful in initial studies may be of limited relevance in designing the most efficient compounds to induce targeted skipping of human dystrophin exons for therapeutic outcomes.
Collapse
|
14
|
Mitrpant C, Fletcher S, Iversen PL, Wilton SD. By-passing the nonsense mutation in the 4 CV mouse model of muscular dystrophy by induced exon skipping. J Gene Med 2009; 11:46-56. [PMID: 19006096 DOI: 10.1002/jgm.1265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder, is caused by protein-truncating mutations in the dystrophin gene. Absence of functional dystrophin renders muscle fibres more vulnerable to damage and necrosis. We report antisense oligomer (AO) induced exon skipping in the B6Ros.Cg-Dmd(mdx-4Cv)/J (4(CV)) mouse, a muscular dystrophy model arising from a nonsense mutation in dystrophin exon 53. Both exons 52 and 53 must be excised to remove the mutation and maintain the reading frame. METHODS A series of 2'-O-methyl modified oligomers on a phosphorothioate backbone (2OMeAOs) were designed and evaluated for the removal of each exon, and the most effective compounds were then combined to induce dual exon skipping in both myoblast cultures and in vivo. Exon skipping efficiency of 2OMeAOs and phosphorodiamidate morpholino oligomers (PMOs) was evaluated both in vitro and in vivo at the RNA and protein levels. RESULTS Compared to the original mdx mouse studies, induction of exon skipping from the 4(CV) dystrophin mRNA was far more challenging. PMO cocktails could restore synthesis of near-full length dystrophin protein in cultured 4(CV) myogenic cells and in vivo, after a single intramuscular injection. CONCLUSIONS By-passing the protein-truncating mutation in the 4(CV) mouse model of muscular dystrophy could not be achieved with single oligomers targeting both exons and was only achieved after the application of AO cocktails to remove exons 52 and 53. As in previous studies, the stability and efficiency of PMOs proved superior to 2OMeAOs for consistent and sustained protein induction in vivo.
Collapse
Affiliation(s)
- Chalermchai Mitrpant
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, QE II Medical Centre, Nedlands, Australia
| | | | | | | |
Collapse
|
15
|
Harding PL, Fall AM, Honeyman K, Fletcher S, Wilton SD. The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther 2008; 15:157-66. [PMID: 17164787 DOI: 10.1038/sj.mt.6300006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antisense oligonucleotides (AOs) can be used to redirect dystrophin pre-messenger RNA (mRNA) processing, to remove selected exons from the mature dystrophin mRNA, to overcome nonsense mutations, and/or restore the reading frame. Redundancy within the dystrophin protein allows some domains to be removed without seriously compromising function. One of the challenges for splicing blockade is to design AOs that efficiently remove targeted exons across the dystrophin pre-mRNA. AOs are initially designed to anneal to the more obvious motifs implicated in the splicing process, such as acceptor or donor splice sites and in silico predicted exonic splicing enhancers. The AOs are evaluated for their ability to induce targeted exon skipping after transfection into cultured myoblasts. Although no single motif has been implicated in the consistent induction of exon skipping, the length of the AO has emerged as an important parameter in designing compounds that redirect dystrophin pre-mRNA processing. We present data from in vitro studies in murine and human cells showing that appropriately designed AOs of 25-31 nucleotides are generally more effective at inducing exon skipping than shorter counterparts. However, there appears to be an upper limit in optimal length, which may have to be established on a case-by-case basis.
Collapse
Affiliation(s)
- P L Harding
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
16
|
Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides. PLoS One 2008; 3:e1844. [PMID: 18365002 PMCID: PMC2267000 DOI: 10.1371/journal.pone.0001844] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/08/2008] [Indexed: 11/19/2022] Open
Abstract
Antisense oligonucleotides (AONs) mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a “window of analysis” that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered “engaged” if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency) of 94% of 176 previously reported AONs. Four novel insights are inferred: (1) the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2) engaged nucleotides at 3′ or 5′ ends of the target site attenuate AON performance more than at other sites; (3) the performance of longer AONs is less attenuated by engaged nucleotides at 3′ or 5′ ends of the target site compared to shorter AONs; (4) engaged nucleotides at 3′ end of a short target site attenuates AON efficiency more than at 5′ end.
Collapse
|
17
|
Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries. BMC Mol Biol 2007; 8:57. [PMID: 17601349 PMCID: PMC1933433 DOI: 10.1186/1471-2199-8-57] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 07/02/2007] [Indexed: 11/18/2022] Open
Abstract
Background Antisense oligonucleotides (AOs) can interfere with exon recognition and intron removal during pre-mRNA processing, and induce excision of a targeted exon from the mature gene transcript. AOs have been used in vitro and in vivo to redirect dystrophin pre-mRNA processing in human and animal cells. Targeted exon skipping of selected exons in the dystrophin gene transcript can remove nonsense or frame-shifting mutations that would otherwise have lead to Duchenne Muscular Dystrophy, the most common childhood form of muscle wasting. Results Although many dystrophin exons can be excised using a single AO, several exons require two motifs to be masked for efficient or specific exon skipping. Some AOs were inactive when applied individually, yet pronounced exon excision was induced in transfected cells when the AOs were used in select combinations, clearly indicating synergistic rather than cumulative effects on splicing. The necessity for AO cocktails to induce efficient exon removal was observed with 2 different chemistries, 2'-O-methyl modified bases on a phosphorothioate backbone and phosphorodiamidate morpholino oligomers. Similarly, other trends in exon skipping, as a consequence of 2'-O-methyl AO action, such as removal of additional flanking exons or variations in exon skipping efficiency with overlapping AOs, were also seen when the corresponding sequences were prepared as phosphorodiamidate morpholino oligomers. Conclusion The combination of 2 AOs, directed at appropriate motifs in target exons was found to induce very efficient targeted exon skipping during processing of the dystrophin pre-mRNA. This combinatorial effect is clearly synergistic and is not influenced by the chemistry of the AOs used to induce exon excision. A hierarchy in exon skipping efficiency, observed with overlapping AOs composed of 2'-O-methyl modified bases, was also observed when these same sequences were evaluated as phosphorodiamidate morpholino oligomers, indicating design parameters established with one chemistry may be applied to the other.
Collapse
|
18
|
Rando TA. Non-viral gene therapy for Duchenne muscular dystrophy: Progress and challenges. Biochim Biophys Acta Mol Basis Dis 2007; 1772:263-71. [PMID: 17005381 DOI: 10.1016/j.bbadis.2006.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common lethal, hereditary diseases of childhood. Since the identification of the genetic basis of this disorder, there has been the hope that a cure would be developed in the form of gene therapy. This has yet to be realized, but many different gene therapy approaches have seen dramatic advances in recent years. Although viral-mediated gene therapy has been at the forefront of the field, several non-viral gene therapy approaches have been applied to animal and cellular models of DMD. These include plasmid-mediated gene delivery, antisense-mediated exon skipping, and oligonucleotide-mediated gene editing. In the past several years, non-viral gene therapy has moved from the laboratory to the clinic. Advances in vector design, formulation, and delivery are likely to lead to even more rapid advances in the coming decade. Given the relative simplicity, safety, and cost-effectiveness of these methodologies, non-viral gene therapy continues to have great promise for future gene therapy approaches to the treatment of DMD.
Collapse
Affiliation(s)
- Thomas A Rando
- Department of Neurology and Neurological Sciences, SUMC, Room A-343, Stanford University School of Medicine, Stanford, CA 94305-5235, USA.
| |
Collapse
|
19
|
McClorey G, Fall AM, Moulton HM, Iversen PL, Rasko JE, Ryan M, Fletcher S, Wilton SD. Induced dystrophin exon skipping in human muscle explants. Neuromuscul Disord 2006; 16:583-90. [PMID: 16919955 DOI: 10.1016/j.nmd.2006.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/15/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Antisense oligonucleotide (AO) manipulation of pre-mRNA splicing of the dystrophin gene is showing promise in overcoming Duchenne muscular dystrophy (DMD)-causing mutations. To date, this approach has been limited to studies using animal models or cultured human muscle cells, and evidence that AOs can induce exon skipping in human muscle has yet to be shown. In this study, we used different AO analogues to induce exon skipping in muscle explants derived from normal and DMD human tissue. We propose that inducing exon skipping in human muscle explants is closer to in vivo conditions than cells in monolayer cultures, and may minimize the numbers of participants in Phase I clinical studies to demonstrate proof of principle of exon skipping in human muscle.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- DNA Mutational Analysis
- Dystrophin/biosynthesis
- Dystrophin/genetics
- Exons/genetics
- Genetic Predisposition to Disease/genetics
- Genetic Testing
- Genetic Therapy/methods
- Genetic Therapy/trends
- Humans
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation/genetics
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- RNA Precursors/genetics
- RNA Splicing/genetics
Collapse
Affiliation(s)
- G McClorey
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Fall AM, Johnsen R, Honeyman K, Iversen P, Fletcher S, Wilton SD. Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. GENETIC VACCINES AND THERAPY 2006; 4:3. [PMID: 16719929 PMCID: PMC1481566 DOI: 10.1186/1479-0556-4-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/24/2006] [Indexed: 11/28/2022]
Abstract
Background Duchenne muscular dystrophy is a fatal genetic disorder caused by dystrophin gene mutations that result in premature termination of translation and the absence of functional protein. Despite the primary dystrophin gene lesion, immunostaining studies have shown that at least 50% of DMD patients, mdx mice and a canine model of DMD have rare dystrophin-positive or 'revertant' fibres. Fine epitope mapping has shown that the majority of transcripts responsible for revertant fibres exclude multiple exons, one of which includes the dystrophin mutation. Methods The mdx mouse model of muscular dystrophy has a nonsense mutation in exon 23 of the dystrophin gene. We have shown that antisense oligonucleotides (AOs) can induce the removal of this exon, resulting in an in-frame mRNA transcript encoding a shortened but functional dystrophin protein. To emulate one exonic combination associated with revertant fibres, we target multiple exons for removal by the application of a group of AOs combined as a "cocktail". Results Exons 19–25 were consistently excluded from the dystrophin gene transcript using a cocktail of AOs. This corresponds to an alternatively processed gene transcript that has been sporadically detected in untreated dystrophic mouse muscle, and is presumed to give rise to a revertant dystrophin isoform. The transcript and the resultant correctly localised smaller protein were confirmed by RT-PCR, immunohistochemistry and western blot analysis. Conclusion This work demonstrates the feasibility of AO cocktails to by-pass dystrophin mutation hotspots through multi-exon skipping. Multi-exon skipping could be important in expediting an exon skipping therapy to treat DMD, so that the same AO formulations may be applied to several different mutations within particular domains of the dystrophin gene.
Collapse
Affiliation(s)
- Abbie M Fall
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Russell Johnsen
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Kaite Honeyman
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | | | - Susan Fletcher
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Stephen D Wilton
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| |
Collapse
|
21
|
Aartsma-Rus A, De Winter CL, Janson AAM, Kaman WE, Van Ommen GJB, Den Dunnen JT, Van Deutekom JCT. Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites. Oligonucleotides 2006; 15:284-97. [PMID: 16396622 DOI: 10.1089/oli.2005.15.284] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As small molecule drugs for Duchenne muscular dystrophy (DMD), antisense oligonucleotides (AONs) have been shown to restore the disrupted reading frame of DMD transcripts by inducing specific exon skipping. This allows the synthesis of largely functional dystrophin proteins and potential conversion of severe DMD into milder Becker muscular dystrophy (BMD) phenotypes. We have previously described 37 exon-internal AONs that induce skipping of 14 DMD exons in human control myotube cultures. Here, we report 77 new AONs, effectively targeting an additional 21 exons. Of the 114 AONs thus far tested, 72 (67%) were effective. AON design initially was based on a partial overlap with predicted open secondary structures in the target RNA. We have analyzed various AON and target exon parameters in retrospect. Interestingly, we observed significantly higher SF2/ASF, SC35, and SRp40 values (as predicted by ESEfinder) for effective AONs when compared with ineffective AONs. In addition, the distance to the 3' splice site was significantly smaller for effective AONs. No other significant correlations were observed. Our results suggest that effective exon-internal AONs primarily act by blocking SR binding sites (which often correspond to open structures) and that ESEfinder may be used to refine AON design for DMD and other genes.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Leiden University Medical Center, Center for Human and Clinical Genetics, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Wilton SD, Fletcher S. Redirecting Splicing to Address Dystrophin Mutations: Molecular By-pass Surgery. ALTERNATIVE SPLICING AND DISEASE 2006; 44:161-97. [PMID: 17076269 DOI: 10.1007/978-3-540-34449-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the dystrophin gene that prevent synthesis of a functional protein lead to Duchenne muscular dystrophy (DMD), the most common serious childhood muscular dystrophy. The major isoform is produced in skeletal muscle and the size of the dystrophin gene and complexity of expression have posed great challenges to the development of a therapy for DMD. Considerable progress has been made in the areas of gene and cell replacement, yet it appears that any potential therapy for DMD is still some years away. Other approaches are being considered, and one that has generated substantial interest over the last few years is induced exon skipping. Antisense oligonucleotides have been used to block abnormal splice sites and force pre-mRNA processing back to the normal patterns. This approach is re-interpreted to address the more common dystrophin mutations, where normal splice sites are targeted to induce abnormal splicing, resulting in specific exon exclusion. Selected exon removal during processing of the dystrophin pre-mRNA can by-pass nonsense mutations or restore a disrupted reading frame arising from genomic deletions or duplications. Attributes of the dystrophin gene that have hampered gene replacement therapy may be regarded as positive features for induced exon skipping, which may be regarded as a form of by-pass surgery at the molecular level. In humans, antisense oligonucleotides have been more generally applied to down-regulate specific gene expression, for the treatment of acquired conditions such as malignancies and viral infections. From interesting in vitro experiments several years ago, the dystrophin exon-skipping field has progressed to the stage of planning for clinical trials.
Collapse
Affiliation(s)
- Stephen D Wilton
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia
| | | |
Collapse
|
23
|
Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Wilton SD. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 2005; 8:207-16. [PMID: 16285002 DOI: 10.1002/jgm.838] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterised by an absence of functional protein, while Becker muscular dystrophy is usually caused by in-frame deletions allowing synthesis of some functional protein. Treatment options are limited, and we are investigating the potential of transcript manipulation to overcome disease-causing mutations. Antisense oligonucleotides have been used to induce specific exon removal during processing of the dystrophin primary transcript and thereby by-pass protein-truncating mutations. The antisense oligonucleotide chemistry most widely used to alter pre-mRNA processing is 2'-O-methyl-modified bases on a phosphorothioate backbone. METHODS The present studies evaluate 2'-O-methylphosphorothioate, peptide nucleic acid and morpholino antisense oligonucleotides in the mdx mouse model of muscular dystrophy, which has a nonsense mutation in exon 23 of the dystrophin gene. RESULTS We demonstrate dystrophin expression in mdx mouse tissues after localised and systemic delivery of a morpholino antisense oligonucleotide designed to target the dystrophin exon 23 donor splice site. CONCLUSIONS The stability of the morpholino structural type, and the fact that it can be delivered to muscle in the absence of a delivery reagent, render this compound eminently suitable for consideration for therapeutic exon skipping to address dystrophin mutations.
Collapse
Affiliation(s)
- Susan Fletcher
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, Western Australia, 6097.
| | | | | | | | | | | |
Collapse
|
24
|
Muntoni F, Bushby K, van Ommen G. 128th ENMC International Workshop on 'Preclinical optimization and Phase I/II Clinical Trials Using Antisense Oligonucleotides in Duchenne Muscular Dystrophy' 22-24 October 2004, Naarden, The Netherlands. Neuromuscul Disord 2005; 15:450-7. [PMID: 15907292 DOI: 10.1016/j.nmd.2005.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 11/17/2022]
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, England.
| | | | | |
Collapse
|
25
|
Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ, Kaman WE, Janson AAM, Vossen RHAM, van Ommen GJB, den Dunnen JT, van Deutekom JCT. Targeted exon skipping in transgenic hDMD mice: A model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 2005; 10:232-40. [PMID: 15294170 DOI: 10.1016/j.ymthe.2004.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022] Open
Abstract
The therapeutic potential of frame-restoring exon skipping by antisense oligonucleotides (AONs) has recently been demonstrated in cultured muscle cells from a series of Duchenne muscular dystrophy (DMD) patients. To facilitate clinical application, in vivo studies in animal models are required to develop safe and efficient AON-delivery methods. However, since exon skipping is a sequence-specific therapy, it is desirable to target the human DMD gene directly. We therefore set up human sequence-specific exon skipping in transgenic mice carrying the full-size human gene (hDMD). We initially compared the efficiency and toxicity of intramuscular AON injections using different delivery reagents in wild-type mice. At a dose of 3.6 nmol AON and using polyethylenimine, the skipping levels accumulated up to 3% in the second week postinjection and lasted for 4 weeks. We observed a correlation of this long-term effect with the intramuscular persistence of the AON. In regenerating myofibers higher efficiencies (up to 9%) could be obtained. Finally, using the optimized protocols in hDMD mice, we were able to induce the specific skipping of human DMD exons without affecting the endogenous mouse gene. These data highlight the high sequence specificity of this therapy and present the hDMD mouse as a unique model to optimize human-specific exon skipping in vivo.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Dystrophin/genetics
- Dystrophin/metabolism
- Exons/genetics
- Gene Targeting/methods
- Humans
- Mice
- Mice, Transgenic
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Oligonucleotides, Antisense/analysis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Mattie Bremmer-Bout
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ittig D, Liu S, Renneberg D, Schümperli D, Leumann CJ. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA. Nucleic Acids Res 2004; 32:346-53. [PMID: 14726483 PMCID: PMC373297 DOI: 10.1093/nar/gkh187] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear antisense properties of a series of tricyclo (tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence- and dose-dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2 microM concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction in CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA- oligonucleotides. The obtained results confirm the power of tc-DNA for nuclear antisense applications. Moreover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.
Collapse
Affiliation(s)
- Damian Ittig
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
27
|
van Deutekom JCT, van Ommen GJB. Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 2003; 4:774-83. [PMID: 14526374 DOI: 10.1038/nrg1180] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial characterization of the genetic defect for Duchenne muscular dystrophy, much effort has been expended in attempts to develop a therapy for this devastating childhood disease. Gene therapy was the obvious answer but, initially, the dystrophin gene and its product seemed too large and complex for this approach. However, our increasing knowledge of the organization of the gene and the role of dystrophin in muscle function has indicated ways to manipulate them both. Gene therapy for Duchenne muscular dystrophy now seems to be in reach.
Collapse
Affiliation(s)
- Judith C T van Deutekom
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
28
|
Gebski BL, Mann CJ, Fletcher S, Wilton SD. Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet 2003; 12:1801-11. [PMID: 12874101 DOI: 10.1093/hmg/ddg196] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mdx mouse model of muscular dystrophy arose due to a nonsense mutation in exon 23 of the dystrophin gene. We have previously demonstrated that 2'-O-methyl phosphorothioate antisense oligonucleotides (AOs) can induce removal of exon 23 during processing of the primary transcript. This results in an in-frame mRNA transcript and subsequent expression of a slightly shorter dystrophin protein in mdx muscle. Refinement of AO design has allowed efficient exon skipping to be induced in mdx mouse muscle cultures at nanomolar concentrations. In contrast, splicing intervention by morpholino AOs has been applied to the beta-globin gene pre-mRNA in cultured cells to correct aberrant splicing when delivered in the micromolar range. The morpholino chemistry produces a neutral molecule that has exceptional biological stability but poor cellular delivery. We present data showing that exon skipping in mdx cells may be induced by morpholino AOs at nanomolar concentrations when annealed to a sense oligonucleotide or "leash", and delivered as a cationic lipoplex. We have investigated a number of leash designs and chemistries, including mixed backbone oligonucleotides, and their ability to influence delivery and efficacy of the morpholino AO. Significantly, we detected dystrophin protein synthesis and correct sarcolemmal localisation after intramuscular injection of morpholino AO : leash lipoplexes in mdx muscle in vivo. We show enhanced delivery of a morpholino AO, enabling the advantageous properties to be exploited for potentially therapeutic outcomes.
Collapse
Affiliation(s)
- Bianca L Gebski
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, 4th Floor, "A" Block, QE II Medical Centre, Verdun Street, Nedlands, Perth, Western Australia 6009, Australia
| | | | | | | |
Collapse
|