1
|
Xuan Y, Wang C, Ghatak S, Sen CK. Tissue Nanotransfection Silicon Chip and Related Electroporation-Based Technologies for In Vivo Tissue Reprogramming. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:217. [PMID: 38276735 PMCID: PMC10820803 DOI: 10.3390/nano14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Tissue nanotransfection (TNT), a cutting-edge technique of in vivo gene therapy, has gained substantial attention in various applications ranging from in vivo tissue reprogramming in regenerative medicine, and wound healing to cancer treatment. This technique harnesses the advancements in the semiconductor processes, facilitating the integration of conventional transdermal gene delivery methods-nanoelectroporation and microneedle technologies. TNT silicon chips have demonstrated considerable promise in reprogramming fibroblast cells of skin in vivo into vascular or neural cells in preclinical studies to assist in the recovery of injured limbs and damaged brain tissue. More recently, the application of TNT chips has been extended to the area of exosomes, which are vital for intracellular communication to track their functionality during the wound healing process. In this review, we provide an in-depth examination of the design, fabrication, and applications of TNT silicon chips, alongside a critical analysis of the electroporation-based gene transfer mechanisms. Additionally, the review discussed the existing limitations and challenges in the current technique, which may project future trajectories in the landscape of gene therapy. Through this exploration, the review aims to shed light on the prospects of TNT in the broader context of gene therapy and tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Chandan K. Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Pagant S, Liberatore RA. In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics 2021; 13:1882. [PMID: 34834297 PMCID: PMC8618954 DOI: 10.3390/pharmaceutics13111882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Since the first approval of monoclonal antibodies by the United States Food and Drug Administration (FDA) in 1986, therapeutic antibodies have become one of the predominant classes of drugs in oncology and immunology. Despite their natural function in contributing to antiviral immunity, antibodies as drugs have only more recently been thought of as tools for combating infectious diseases. Passive immunization, or the delivery of the products of an immune response, offers near-immediate protection, unlike the active immune processes triggered by traditional vaccines, which rely on the time it takes for the host's immune system to develop an effective defense. This rapid onset of protection is particularly well suited to containing outbreaks of emerging viral diseases. Despite these positive attributes, the high cost associated with antibody manufacture and the need for a cold chain for storage and transport limit their deployment on a global scale, especially in areas with limited resources. The in vivo transfer of nucleic acid-based technologies encoding optimized therapeutic antibodies transform the body into a bioreactor for rapid and sustained production of biologics and hold great promise for circumventing the obstacles faced by the traditional delivery of antibodies. In this review, we provide an overview of the different antibody delivery strategies that are currently being developed, with particular emphasis on in vivo transfection of naked plasmid DNA facilitated by electroporation.
Collapse
|
3
|
Rosa Lima E, Regina Cecchi C, Higuti E, Protasio Pacheco de Jesus G, Moura Gomes A, Aparecido Zacarias E, Bartolini P, Nunes Peroni C. Optimization of Mouse Growth Hormone Plasmid DNA Electrotransfer into Tibialis Cranialis Muscle of "Little" Mice. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25215034. [PMID: 33142961 PMCID: PMC7662792 DOI: 10.3390/molecules25215034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Previous non-viral gene therapy was directed towards two animal models of dwarfism: Immunodeficient (lit/scid) and immunocompetent (lit/lit) dwarf mice. The former, based on hGH DNA administration into muscle, performed better, while the latter, a homologous model based on mGH DNA, was less efficient, though recommended as useful for pre-clinical assays. We have now improved the growth parameters aiming at a complete recovery of the lit/lit phenotype. Electrotransfer was based on three pulses of 375 V/cm of 25 ms each, after mGH-DNA administration into two sites of each non-exposed tibialis cranialis muscle. A 36-day bioassay, performed using 60-day old lit/lit mice, provided the highest GH circulatory levels we have ever obtained for GH non-viral gene therapy: 14.7 ± 3.7 ng mGH/mL. These levels, at the end of the experiment, were 8.5 ± 2.3 ng/mL, i.e., significantly higher than those of the positive control (4.5 ± 1.5 ng/mL). The catch-up growth reached 40.9% for body weight, 38.2% for body length and 82.6%–76.9% for femur length. The catch-up in terms of the mIGF-1 levels remained low, increasing from the previous value of 5.9% to the actual 8.5%. Although a complete phenotypic recovery was not obtained, it should be possible starting with much younger animals and/or increasing the number of injection sites.
Collapse
Affiliation(s)
- Eliana Rosa Lima
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Claudia Regina Cecchi
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Eliza Higuti
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
- Biotechnology Quality Control Laboratory, Butantan Institute, 05503-900 São Paulo, SP, Brazil
| | - Gustavo Protasio Pacheco de Jesus
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Alissandra Moura Gomes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Enio Aparecido Zacarias
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Cibele Nunes Peroni
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
- Correspondence: ; Tel.: +55-11-2810-5855
| |
Collapse
|
4
|
Andrews CD, Huang Y, Ho DD, Liberatore RA. In vivo expressed biologics for infectious disease prophylaxis: rapid delivery of DNA-based antiviral antibodies. Emerg Microbes Infect 2020; 9:1523-1533. [PMID: 32579067 PMCID: PMC7473320 DOI: 10.1080/22221751.2020.1787108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020. How high these numbers will eventually go depends on many factors, including policies on travel and movement, availability of medical support, and, because there is no vaccine or highly effective treatment, the pace of biomedical research. Other than an approved antiviral drug that can be repurposed, monoclonal antibodies (mAbs) hold the most promise for providing a stopgap measure to lessen the impact of an outbreak while vaccines are in development. Technical advances in mAb identification, combined with the flexibility and clinical experience of mAbs in general, make them ideal candidates for rapid deployment. Furthermore, the development of mAb cocktails can provide a faster route to developing a robust medical intervention than searching for a single, outstanding mAb. In addition, mAbs are well-suited for integration into platform technologies for delivery, in which minimal components need to be changed in order to be redirected against a novel pathogen. In particular, utilizing the manufacturing and logistical benefits of DNA-based platform technologies in order to deliver one or more antiviral mAbs has the potential to revolutionize EID responses.
Collapse
Affiliation(s)
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, New York, NY, USA.,Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA.,Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA
| | | |
Collapse
|
5
|
Brolin C, Shiraishi T, Hojman P, Krag TO, Nielsen PE, Gehl J. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e267. [PMID: 26623939 PMCID: PMC5014535 DOI: 10.1038/mtna.2015.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.
Collapse
Affiliation(s)
- Camilla Brolin
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas O Krag
- Neuromuscular Research Unit, Department of Neurology Rigshospitalet, University of Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark
| |
Collapse
|
6
|
Akerstrom T, Vedel K, Needham J, Hojman P, Kontou E, Hellsten Y, Wojtaszewski JF. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle. Biochem Biophys Rep 2015; 4:342-350. [PMID: 29124223 PMCID: PMC5669402 DOI: 10.1016/j.bbrep.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6 µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79–84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle. Parameters for effective in vivo skeletal muscle transfection are species specific. Pre-treatment with a rat-specific hyaluronidase dose greatly improves transfection efficiency. Delivering plasmid DNA more uniformly enhances transfection efficiency in rat skeletal muscle. Transfection efficiency is not improved by increasing plasmid DNA dose. Exercise training does not affect transfection stability.
Collapse
Affiliation(s)
- Thorbjorn Akerstrom
- The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Correspondence to: The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark. Fax: +4535320870.The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenUniversitetsparken 13CopenhagenDK-2100Denmark
| | - Kenneth Vedel
- The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Needham
- The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Hojman
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eftychia Kontou
- The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Centre, Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F.P. Wojtaszewski
- The August Krogh Centre, Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Williams JA. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013; 1:225-49. [PMID: 26344110 PMCID: PMC4494225 DOI: 10.3390/vaccines1030225] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.
Collapse
Affiliation(s)
- James A Williams
- Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA.
| |
Collapse
|
8
|
Abstract
BACKGROUND AND DESIGN Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. METHODS AND RESULTS The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. CONCLUSION Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.
Collapse
|
9
|
Hallengärd D, Bråve A, Isaguliants M, Blomberg P, Enger J, Stout R, King A, Wahren B. A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines. GENETIC VACCINES AND THERAPY 2012; 10:5. [PMID: 22873174 PMCID: PMC3532290 DOI: 10.1186/1479-0556-10-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/12/2012] [Indexed: 01/04/2023]
Abstract
Background The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. Methods Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). Results Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of DNA. After division of a defined DNA dose into multiple skin sites, the humoral response was particularly enhanced by Biojector while cellular responses were particularly enhanced by EP. Furthermore, a close correlation between in vivo antigen expression and cell-mediated as well as humoral immune responses was observed. Conclusions These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Influenza A vaccines using linear expression cassettes delivered via electroporation afford full protection against challenge in a mouse model. Vaccine 2012; 30:6946-54. [PMID: 22406460 DOI: 10.1016/j.vaccine.2012.02.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 11/21/2022]
Abstract
Alternative DNA vaccine constructs such as fully synthetic linear expressing cassettes (LECs) offer the advantage of accelerated manufacturing techniques as well as the lack of both antibiotic resistance genes and bacterial contaminants. The speed of manufacture makes LEC technology a possible future vaccination strategy for pandemic influenza outbreaks. Previously, we reported on a novel concept of DNA delivery to dermal tissue by a minimally invasive electroporation (EP) surface device powered using low voltage parameters. This device allows electroporation without penetration of electrodes into the skin. In addition to enhancing the delivery of traditional plasmid DNA vaccines, this device may also offer a safe, tolerable and efficient method to administer LECs. To assess immunogenicity and efficacy of EP-enhanced LEC delivery in mice, we designed and tested two influenza antigens in the form of LEC constructs delivered using the newly developed surface dermal EP device. Strong CTL and antibody responses were induced by the LEC versions of the DNA vaccine. When challenged with A/Canada/AB/RV1532/2009 viruses, mice immunized with LEC encoding the M2 and NP antigens recovered faster than naïve or mice immunized ID without EP. Mice immunized with equal-molar doses of LEC encoding the M2 and NP antigens demonstrated 100% survival following a lethal (100× LD50) challenge of the heterologuos and highly pathogenic H5N1 influenza virus (A/Vietnam/1203/04). These results suggest that influenza DNA vaccines based on LEC technology combined with the surface delivery platform are capable of fully protecting mice in a lethal challenge and the LEC based DNA constructs may serve as viable vaccine candidates.
Collapse
|
11
|
Chabot S, Orio J, Schmeer M, Schleef M, Golzio M, Teissié J. Minicircle DNA electrotransfer for efficient tissue-targeted gene delivery. Gene Ther 2012; 20:62-8. [DOI: 10.1038/gt.2011.215] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Touchard E, Kowalczuk L, Bloquel C, Naud MC, Bigey P, Behar-Cohen F. The ciliary smooth muscle electrotransfer: basic principles and potential for sustained intraocular production of therapeutic proteins. J Gene Med 2010; 12:904-19. [DOI: 10.1002/jgm.1517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Kim CY, Kang ES, Kim SB, Kim HE, Choi JH, Lee DS, Im SJ, Yang SH, Sung YC, Kim BM, Kim BG. Increased in vivo immunological potency of HB-110, a novel therapeutic HBV DNA vaccine, by electroporation. Exp Mol Med 2009; 40:669-76. [PMID: 19116452 DOI: 10.3858/emm.2008.40.6.669] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulse-induced permeabilization of cellular membranes, generally referred to as electroporation (EP), has been used for years as a tool to increase macromolecule uptake in tissues, including nucleic acids, for gene therapeutic applications, and this technique has been shown to result in improved immunogenicity. In this study, we assessed the utility of EP as a tool to improve the efficacy of HB-110, a novel therapeutic DNA vaccine against chronic hepatitis B, now in phase 1 of clinical study in South Korea. The potency of HB-110 in mice was shown to be improved by EP. The rapid onset of antigen expression and higher magnitude of humoral and cellular responses in electric pulse-treated mice revealed that EP may enable a substantial reduction in the dosage of DNA vaccine required to elicit a response similar in magnitude to that achievable via conventional administration. This study also showed that EP-based vaccination at 4-week-intervals elicited a cellular immune response which was about two-fold higher than the response elicited by conventional vaccination at 2-week intervals. These results may provide a rationale to reduce the clinical dose and increase the interval between the doses in the multidose vaccination schedule. Electric pulsing also elicited a more balanced immune response against four antigens expressed by HB-110: S, preS, Core, and Pol.
Collapse
Affiliation(s)
- Chae Young Kim
- Research Laboratories, Dong-A Pharm. Co., Ltd. Yongin 449-900, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
André F, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols MP, Miklavcic D, Neumann E, Teissié J, Mir L. Efficiency of High- and Low-Voltage Pulse Combinations for Gene Electrotransfer in Muscle, Liver, Tumor, and Skin. Hum Gene Ther 2008; 19:1261-71. [DOI: 10.1089/hum.2008.060] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- F.M. André
- CNRS, UMR 8121, Institute Gustave-Roussy, F-94805 Villejuif Cédex, France
- Univ Paris-Sud, UMR 8121, France
| | - J. Gehl
- Department of Oncology 54B1, Copenhagen University Hospital Herlev, DK-2730 Herlev, Denmark
| | - G. Sersa
- Department of Experimental Oncology, Institute of Oncology, SI-1000 Ljubljana, Slovenia
| | - V. Préat
- Department of Pharmaceutical Technology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - P. Hojman
- Department of Oncology 54B1, Copenhagen University Hospital Herlev, DK-2730 Herlev, Denmark
- UMR 5089, IPBS du CNRS, F-31077 Toulouse, France
| | - J. Eriksen
- Department of Oncology 54B1, Copenhagen University Hospital Herlev, DK-2730 Herlev, Denmark
| | - M. Golzio
- UMR 5089, IPBS du CNRS, F-31077 Toulouse, France
- Université Paul Sabatier, Toulouse III, UMR 5089, France
| | - M. Cemazar
- Department of Experimental Oncology, Institute of Oncology, SI-1000 Ljubljana, Slovenia
| | - N. Pavselj
- Department of Pharmaceutical Technology, Université Catholique de Louvain, 1200 Brussels, Belgium
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - M.-P. Rols
- UMR 5089, IPBS du CNRS, F-31077 Toulouse, France
| | - D. Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - E. Neumann
- Faculty of Chemistry, University of Bielefeld, D-33502 Bielefeld, Germany
| | - J. Teissié
- UMR 5089, IPBS du CNRS, F-31077 Toulouse, France
- Université Paul Sabatier, Toulouse III, UMR 5089, France
| | - L.M. Mir
- CNRS, UMR 8121, Institute Gustave-Roussy, F-94805 Villejuif Cédex, France
- Univ Paris-Sud, UMR 8121, France
| |
Collapse
|
15
|
Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM, Signori E. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther 2008; 8:1645-57. [DOI: 10.1517/14712598.8.11.1645] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Tevz G, Pavlin D, Kamensek U, Kranjc S, Mesojednik S, Coer A, Sersa G, Cemazar M. Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Technol Cancer Res Treat 2008; 7:91-101. [PMID: 18345697 DOI: 10.1177/153303460800700201] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle is an attractive target tissue for delivery of therapeutic genes, since it is well vascularized, easily accessible, and has a high capacity for protein synthesis. For efficient transfection in skeletal muscle, several protocols have been described, including delivery of low voltage electric pulses and a combination of high and low voltage electric pulses. The aim of this study was to determine the influence of different parameters of electrotransfection on short-term and long-term transfection efficiency in murine skeletal muscle, and to evaluate histological changes in the treated tissue. Different parameters of electric pulses, different time lags between plasmid DNA injection and application of electric pulses, and different doses of plasmid DNA were tested for electrotransfection of tibialis cranialis muscle of C57Bl/6 mice using DNA plasmid encoding green fluorescent protein (GFP). Transfection efficiency was assessed on frozen tissue sections one week after electrotransfection using a fluorescence microscope and also noninvasively, followed by an in vivo imaging system using a fluorescence stereo microscope over a period of several months. Histological changes in muscle were evaluated immediately or several months after electrotransfection by determining infiltration of inflammatory mononuclear cells and presence of necrotic muscle fibers. The most efficient electrotransfection into skeletal muscle of C57Bl/6 mice in our experiments was achieved when one high voltage (HV) and four low voltage (LV) electric pulses were applied 5 seconds after the injection of 30 microg of plasmid DNA. This protocol resulted in the highest short-term as well as long-term transfection. The fluorescence intensity of the transfected area declined after 2-3 weeks, but GFP fluorescence was still detectable 18 months after electrotransfection. Extensive inflammatory mononuclear cell infiltration was observed immediately after the electrotransfection procedure using the described parameters, but no necrosis or late tissue damage was observed. This study showed that electric pulse parameters, time lag between the injection of DNA and application of electric pulses, and dose of plasmid DNA affected the duration of transgene expression in murine skeletal muscle. Therefore, transgene expression in muscle can be controlled by appropriate selection of electrotransfection protocol.
Collapse
Affiliation(s)
- Gregor Tevz
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Orság P, Kvardová V, Raska M, Miller AD, Ledvina M, Turánek J. Quantitative real-time PCR study on persistence of pDNA vaccine pVax-Hsp60 TM814 in beef muscles. GENETIC VACCINES AND THERAPY 2008; 6:11. [PMID: 18761754 PMCID: PMC2542361 DOI: 10.1186/1479-0556-6-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022]
Abstract
Background Application of plasmid DNA for immunization of food-producing animals established new standards of food safety. The addition of foreign products e.g. pDNA into the food chain should be carefully examined to ensure that neither livestock animals nor consumers develop unpredicted or undesirable side-effects. Methods A quantitative real-time PCR (QRTPCR) methodology was developed to study the biodistribution and persistence of plasmid DNA vaccine pDNAX (pVAX-Hsp60 TM814) in mice and beef cattle. The linear quantification range and the sensitivity of the method was found to be 10 – 109 copies per reaction (500 ng/gDNA) and 3 copies per reaction, respectively. Results Persistence of pDNAX in mice muscle tissue was restricted to injection site and the amount of pDNAX showed delivery formulation dependent (naked pDNA, electroporation, cationic liposome complexes) and mouse age-dependent clearance form injection site but pDNAX was still detectable even after 365 days. The QRTPCR analysis of various muscle tissue samples of vaccinated beef bulls performed 242–292 days after the last revaccination proved that residual pDNAX was found only in the injection site. The highest plasmid levels (up to 290 copies per reaction) were detected in the pDNAX:CDAN/DOPE group similarly to mice model. No pDNA was detected in the samples from distant muscles and draining lymph nodes. Conclusion Quantitative real-time PCR (QRTPCR) assay was developed to assess the residual pDNA vaccine pVAX-Hsp60 TM814 in mice and beef cattle. In beef cattle, ultra low residual level of pDNA vaccine was only found at the injection site. According to rough estimation, consumption of muscles from the injection site represents almost an undetectable intake of pDNA (400 fg/g muscle tissue) for consumers. Residual plasmid in native state will hardly be found at measurable level following further meat processing. This study brings supportive data for animal and food safety and hence for further approval of pDNA vaccine field trials.
Collapse
Affiliation(s)
- Petr Orság
- Veterinary Research Institute, Department of Immunology, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
18
|
Li Y, Han W, Zhang Y, Yuan L, Shi X, Yu Y, Zhang Y, Wang J. Intramuscular electroporation of a plasmid encoding human plasminogen kringle 5 induces growth inhibition of Lewis lung carcinoma in mice. Cancer Biother Radiopharm 2008; 23:332-41. [PMID: 18593366 DOI: 10.1089/cbr.2007.0437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tumor growth and metastasis depend critically on blood vessel formation. Antiangiogenesis, therefore, represents a promising strategy for cancer therapy. The kringle 5 (K5) domain of human plasminogen is a potent angiogenesis inhibitor. To investigate whether intramuscular electroporation (EP) of K5 has antitumor activity in mouse tumor models, we constructed a plasmid encoding K5 (pVAX1-K5). Hela cells transfected with this plasmid produced and secreted K5 that inhibited the migration of human microvascular endothelial cells. Intramuscular EP treatment of pVAX1-K5 inhibited the growth of Lewis lung carcinoma and prolonged the survival time of tumor-bearing mice. Angiogenesis was obviously inhibited, and apoptosis was induced in tumor cells of mice that received intramuscular EP of pVAX1-K5. On the contrary, intramuscular injection of pVAX1-K5 without EP failed to show the same effects. The data indicate that intramuscular EP of plasmid DNA encoding the K5 domain is an effective strategy for the experimental treatment of cancer by expressing K5.
Collapse
Affiliation(s)
- Yonghong Li
- Biotechnology Center of the Forth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dai KR, Zhang XL, Shi Q, Fernandes JC. Gene therapy of arthritis and orthopaedic disorders: current experimental approaches in China and in Canada. Expert Opin Biol Ther 2008; 8:1337-46. [DOI: 10.1517/14712598.8.9.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Draghia-Akli R, Khan AS. Muscle and fat mass modulation in different clinical models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 423:449-60. [PMID: 18370221 DOI: 10.1007/978-1-59745-194-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Studies described in the recent literature support the idea that gene therapy can lead to genuine clinical benefits when mediated by plasmid delivery in conjunction with electroporation. Plasmid-mediated muscle-targeted gene transfer offers the potential of a cost-effective pharmaceutical-grade therapy delivered by simple intramuscular injection. This approach is particularly appropriate for modulating muscle and fat mass and their intrinsic properties, from treatment of conditions such as cachexia associated with chronic diseases, autoimmune diseases, e.g., myasthenia gravis, to stimulation or suppression of appetite, and further to in vivo manipulation of glucose metabolism and fat deposition in patients with diabetes, or to basic studies of muscle-specific transcription factors and their impact in development. Recent innovations, including in situ electroporation, enabling sustained systemic protein delivery within the therapeutic range, are reviewed. Translation of these advances to human clinical trials will enable muscle- and fat-targeted gene therapy to become a viable therapeutic alternative.
Collapse
|
21
|
Pavlin D, Tozon N, Sersa G, Pogacnik A, Cemazar M. Efficient electrotransfection into canine muscle. Technol Cancer Res Treat 2008; 7:45-54. [PMID: 18198924 DOI: 10.1177/153303460800700106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Two different types of electroporation protocols have been developed for efficient electrotransfer of plasmid DNA into skeletal muscle of experimental animals. At first, only low voltage electric pulses have been used, but lately, a combination of high and low voltage pulses has been suggested as more efficient. Up to date, in dogs, this type of electroporation protocol has never been used for muscle targeted plasmid DNA electrotransfection. In this study, we used two different DNA plasmids, one encoding green fluorescent protein and one encoding human interleukin-12. Five different electroporation protocols were evaluated. Three of them featured different combinations of high and low voltage pulses, and two were performed with delivery of low voltage pulses only. Our study shows that combination of 1 high voltage pulse (600 V/cm, 100 mus), followed by 4 low voltage pulses (80 V/cm, 100 ms, 1 Hz) yielded in the same transfection efficiency as the standard trains of low voltage pulses. However, this protocol is performed quicker and, thus, more suitable for potential use in clinical practice. In addition, it yielded in detectable systemic expression of human interleukin-12. Electrotransfer of either of the plasmids was associated with only mild and transitory local side effects, without clinically detectable systemic side effects. The results indicate that electrotransfection is a feasible, effective, and safe method for muscle targeted gene therapy in dogs, which could have potential for clinical applications in veterinary medicine of small animals.
Collapse
Affiliation(s)
- D Pavlin
- University of Ljubljana, Veterinary Faculty Ljubljana, Gerbiceva 60, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
22
|
Kusumanto YH, Mulder NH, Dam WA, Losen M, Losen MH, De Baets MH, Meijer C, Hospers GAP. Improvement of in vivo transfer of plasmid DNA in muscle: comparison of electroporation versus ultrasound. Drug Deliv 2007; 14:273-7. [PMID: 17613014 DOI: 10.1080/10717540601098807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods - electroporation and ultrasound - that facilitate DNA uptake into cells. Mice (C57Bl/6) were injected intramuscular using plasmid DNA encoding an intracellular protein (p53) followed by electroporation or ultrasound. Then 48 hr after the injections the mice were sacrificed. The parameter for transfection efficiency was the area of muscle expressing the transgene. The p53 expression plasmid showed a 36-fold increase (p = 0.015) in transfection efficiency with electroporation compared to ultrasound. Compared with ultrasound, electroporation significantly improves transfection efficiency of naked plasmid DNA transfer into skeletal muscle.
Collapse
Affiliation(s)
- Yoka H Kusumanto
- Department of Medical Oncology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Michlits W, Mittermayr R, Schäfer R, Redl H, Aharinejad S. Fibrin-embedded administration of VEGF plasmid enhances skin flap survival. Wound Repair Regen 2007; 15:360-7. [PMID: 17537123 DOI: 10.1111/j.1524-475x.2007.00238.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to experimentally evaluate whether topical fibrin-mediated administration of a vascular endothelial growth factor (VEGF)-A plasmid to the wound bed can protect skin flaps from necrosis. A plasmid expression vector containing the VEGF-A cDNA was constructed. The plasmid was then administered to the wound bed of rat abdominal skin flaps in a fibrin sealant. The percentage of viable, ischemic and necrotic tissue was assessed postoperatively as a baseline and after 3 and 7 days using digital surface area morphometry. Laser Doppler imaging of the flaps and VEGF-A Western blot analysis of flap tissue were performed to assess angiogenesis and VEGF-A tissue levels. Flaps treated with VEGF plasmids in the presence of uptake enhancing Lipofectamine transfection reagent increased flap survival 7 days postoperatively significantly associated with markedly elevated tissue perfusion and enhanced tissue VEGF-A protein expression. Our results indicate that topical fibrin-mediated administration of a VEGF-A plasmid may serve as an alternative to previous strategies in treating ischemic skin flaps. The suggested therapeutic approach is easily applicable and inexpensive in preparation. Thus, this protocol may also enhance wound healing in posttrauma skin lacerations or in skin grafts.
Collapse
Affiliation(s)
- Wolfgang Michlits
- Laboratory for Cardiovascular Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
24
|
Hojman P, Gissel H, Gehl J. Sensitive and precise regulation of haemoglobin after gene transfer of erythropoietin to muscle tissue using electroporation. Gene Ther 2007; 14:950-9. [PMID: 17410179 DOI: 10.1038/sj.gt.3302951] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electroporation-based gene transfer (electro gene transfer (EGT)) is gaining increasing momentum, in particular for muscle tissue, where long-term high-level expression is obtainable. Induction of expression using the Tet-On system was previously established; however, attempts to reach a predefined target dose - a prescription, have not been reported. We set three target haemoglobin levels (10, 12 and 14 mmol/l, base level was 8.2 mmol/l) and aimed at them by transferring the erythropoietin (EPO) gene to mouse tibialis cranialis (TC) muscle, and varying (1) DNA amount, (2) muscle mass transfected and (3) induction with the Tet-On system. Results showed that (a) using GFP, luciferase and EPO low DNA amounts were needed. In fact, 0.5 microg of DNA to one TC muscle led to significant Hgb elevation - this amount extrapolates to 1.4 mg of DNA in humans, (b) three prescribers hit the targets with average Hgb of 10.5, 12.0 and 13.7 mmol/l, (c) different approaches could be used, (d) undershooting could be corrected by retransferring, and (e) overshooting could be alleviated by reducing dose of inducer (doxycycline (dox)). In conclusion, this study shows that using EGT to muscle, a preset level of protein expression can be reached. This is of great interest for future clinical use.
Collapse
Affiliation(s)
- P Hojman
- Laboratory of the Department of Oncology, University of Copenhagen at Herlev Hospital, Herlev, Denmark
| | | | | |
Collapse
|
25
|
Petry H, Cashion L, Szymanski P, Ast O, Orme A, Gross C, Bauzon M, Brooks A, Schaefer C, Gibson H, Qian H, Rubanyi GM, Harkins RN. Mx1 and IP-10: biomarkers to measure IFN-beta activity in mice following gene-based delivery. J Interferon Cytokine Res 2006; 26:699-705. [PMID: 17032164 DOI: 10.1089/jir.2006.26.699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant interferon-beta (IFN-beta) protein is used successfully for the treatment of multiple sclerosis (MS). Gene therapy might be an alternative approach to overcome drawbacks occurring with IFN-beta protein therapy. A critical issue in developing a new approach is detection of biologically active IFN-beta in preclinical models. The goal of the present study was to determine if Mx1 and IP-10, which are known to be activated after IFN-beta treatment in humans, can be used as biomarkers in mice. In three in vivo experiments, the correlation between different methods of murine IFN-beta (MuIFN-beta) delivery and biomarker induction was studied: (1) bolus protein delivery by intravenous (i.v.) or intramuscular (i.m.) injection, (2) gene-based delivery of IFN- beta by i.m. injection of plasmid DNA, followed by electroporation, and (3) gene-based delivery of IFN-beta by i.m. injection of adenovirus-associated type 1 (AAV1). Short-term induction of Mx1 mRNA and IP-10 was observed after treatment with bolus MuIFN-beta protein. Long-term induction of both biomarkers was observed after IFN-beta plasmid DNA delivery or when AAV1 was used as the vector. The experiments demonstrate that gene-based delivery provides sustained levels of IFN-beta compared with bolus protein injection and that Mx1 RNA and IP-10 can be used to monitor biologically active circulating plasma MuIFN-beta protein in mice.
Collapse
Affiliation(s)
- Harald Petry
- Department of Gene Therapy, Berlex Biosciences, Richmond, CA 94806, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shy ME. Therapeutic strategies for the inherited neuropathies. Neuromolecular Med 2006; 8:255-78. [PMID: 16775380 DOI: 10.1385/nmm:8:1-2:255] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/21/2005] [Accepted: 11/30/2005] [Indexed: 11/11/2022]
Abstract
More than 30 genetic causes have been identified for the inherited neuropathies collectively referred to as Charcot-Marie-Tooth (CMT) disease. Previous therapies for CMT were limited to traditional approaches such as rehabilitation medicine, ambulation aids, and pain management. Identification of the genes causing CMT has led to improved genetic counseling and assistance in family planning. Identification of these genes is beginning to delineate common molecular pathways in multiple forms of CMT that can be exploited in future molecular therapies. Scientifically based clinical trials for CMT are currently being implemented. Techniques of gene therapy are advancing to the point that they may become feasible options for patients with CMT and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E Shy
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit MI 48201, USA.
| |
Collapse
|
27
|
Khan AS, Pope MA, Draghia-Akli R. Highly Efficient Constant-Current Electroporation IncreasesIn VivoPlasmid Expression. DNA Cell Biol 2005; 24:810-8. [PMID: 16332178 DOI: 10.1089/dna.2005.24.810] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electroporation has been demonstrated as an effective technique for enhancing the delivery of plasmids coding for DNA vaccines and therapeutic proteins into skeletal muscle. Nevertheless, constant-voltage techniques do not take into account the resistance of the tissue and result in tissue damage, inflammation, and loss of plasmid expression. In the present study, we have used a software-driven constant-current electroporator to deliver plasmids to mice and small and large pigs. The voltage, amperage, and resistance of the tissue during pulses were recorded and analyzed. Optimal conditions of electroporation were identified in both species, and found to be highly dependent on the individual tissue resistance. Six- to 10-week-old pigs had higher muscle resistance compared to 1- to 2-year-old pigs, but both values were four to five times lower than the resistance of the mouse muscle. In mice, optimum amperage, pulse length, and lag time between plasmid injection and electroporation were identified to be 0.1 Amps, 20 msec and 0 sec. The electroporation pulse pattern among the electrodes also affected plasmid expression. These results indicate that age- and tissue-specific resistance, pulse pattern, and other variables associated with the electroporation need to be optimized for each separate species to achieve maximum plasmid expression.
Collapse
|