1
|
Da X, Xiang Y, Hu H, Kong X, Qiu C, Jiang Z, Zhao G, Cai J, Huang A, Zhang C, He C, Lv B, Zhang H, Yang Y. Identification of changes in bile composition in pancreaticobiliary reflux based on liquid chromatography/mass spectrometry metabolomics. BMC Gastroenterol 2024; 24:5. [PMID: 38166630 PMCID: PMC10759582 DOI: 10.1186/s12876-023-03097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Pancreaticobiliary reflux (PBR) can induce gallstone formation; however, its pathogenic mechanism remains unclear. In this study, we explored the mechanism of PBR by the non-targeted metabolomic analysis of bile in patients with PBR. OBJECTIVE The aim of this study was to investigate the pathogenic mechanism in PBR by the non-targeted metabolomic analysis of bile collected during surgery. METHODS Sixty patients who underwent gallstone surgery at our center from December 2020 to May 2021 were enrolled in the study. According to the level of bile amylase, 30 patients with increased bile amylase ( > 110 U/L) were classified into the PBR group, and the remaining 30 patients were classified into the control group (≤ 110 U/L). The metabolomic analysis of bile was performed. RESULTS The orthogonal projections to latent structure-discriminant analysis of liquid chromatography mass spectrometry showed significant differences in bile components between the PBR and control groups, and 40 metabolites were screened by variable importance for the projection value (VIP > 1). The levels of phosphatidylcholine (PC) and PC (20:3(8Z,11Z,14Z)/14:0) decreased significantly, whereas the levels of lysoPC (16:1(9z)/0:0), lysoPC (15:0), lysoPC (16:0), palmitic acid, arachidonic acid, leucine, methionine, L-tyrosine, and phenylalanine increased. CONCLUSIONS Significant differences in bile metabolites were observed between the PBR and control groups. Changes in amino acids and lipid metabolites may be related to stone formation and mucosal inflammation.
Collapse
Affiliation(s)
- Xuanbo Da
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yukai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiangyu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Gang Zhao
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Anhua Huang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chuanqi He
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Beining Lv
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Honglei Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yulong Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Zhang K, Wang Y, Cui X, Wang W, Li Y. Features of Metabolite Changes in Disease Evolution in Cholecystolithiasis. Dig Dis Sci 2024; 69:275-288. [PMID: 37943386 PMCID: PMC10787879 DOI: 10.1007/s10620-023-08134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Cholecystolithiasis is defined as a disease caused by complex and changeable factors. Advanced age, female sex, and a hypercaloric diet rich in carbohydrates and poor in fiber, together with obesity and genetic factors, are the main factors that may predispose people to choledocholithiasis. However, serum biomarkers for the rapid diagnosis of choledocholithiasis remain unclear. AIMS This study was designed to explore the pathogenesis of cholecystolithiasis and identify the possible metabolic and lipidomic biomarkers for the diagnosis of the disease. METHODS Using UHPLC-MS/MS and GC-MS, we detected the serum of 28 cholecystolithiasis patients and 19 controls. Statistical analysis of multiple variables included Principal Component Analysis (PCA). Visualization of differential metabolites was performed using volcano plots. The screened differential metabolites were further analyzed using clustering heatmaps. The quality of the model was assessed using random forests. RESULTS In this study, dramatically altered lipid homeostasis was detected in cholecystolithiasis group. In addition, the levels of short-chain fatty acids and amino acids were noticeably changed in patients with cholecystolithiasis. They detected higher levels of FFA.18.1, FFA.20.1, LPC16.0, and LPC20.1, but lower levels of 1-Methyl-L-histidine and 4-Hydroxyproline. In addition, glycine and L-Tyrosine were higher in choledocholithiasis group. Analyses of metabolic serum in affected patients have the potential to develop an integrated metabolite-based biomarker model that can facilitate the early diagnosis and treatment of the disease. CONCLUSION Our results highlight the value of integrating lipid, amino acid, and short-chain fatty acid to explore the pathophysiology of cholecystolithiasis disease, and consequently, improve clinical decision-making.
Collapse
Affiliation(s)
- Kun Zhang
- Shanghai Biotree Biotech Co. Ltd., Shanghai, China
- Institute of Basic Medical Sciences, The Second Hospital of Shandong University, Shandong, 250033, China
| | - Yongzheng Wang
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China
| | - Xiaoxuan Cui
- Shanghai Biotree Biotech Co. Ltd., Shanghai, China
| | - Wei Wang
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China.
| | - Yuliang Li
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China
| |
Collapse
|
3
|
Liu JX, Liu M, Yu GZ, Zhao QQ, Wang JL, Sun YH, Koda S, Zhang B, Yu Q, Yan C, Tang RX, Jiang ZH, Zheng KY. Clonorchis sinensis infection induces hepatobiliary injury via disturbing sphingolipid metabolism and activating sphingosine 1-phosphate receptor 2. Front Cell Infect Microbiol 2022; 12:1011378. [PMID: 36339341 PMCID: PMC9627039 DOI: 10.3389/fcimb.2022.1011378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2024] Open
Abstract
Clonorchis sinensis (C. sinensis) infection induces severe hepatobiliary injuries, which can cause inflammation, periductal fibrosis, and even cholangiocarcinoma. Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) and its receptor S1P receptors (S1PRs) have been implicated in many liver-related diseases. However, the role of S1PRs in C. sinensis-mediated biliary epithelial cells (BECs) proliferation and hepatobiliary injury has not been elucidated. In the present study, we found that C. sinensis infection resulted in alteration of bioactive lipids and sphingolipid metabolic pathways in mice liver. Furthermore, S1PR2 was predominantly activated among these S1PRs in BECs both in vivo and in vitro. Using JTE-013, a specific antagonist of S1PR2, we found that the hepatobiliary pathological injuries, inflammation, bile duct hyperplasia, and periductal fibrosis can be significantly inhibited in C. sinensis-infected mice. In addition, both C. sinensis excretory-secretory products (CsESPs)- and S1P-induced activation of AKT and ERK1/2 were inhibited by JTE-013 in BECs. Therefore, the sphingolipid metabolism pathway and S1PR2 play an important role, and may serve as potential therapeutic targets in hepatobiliary injury caused by C. sinensis-infection.
Collapse
Affiliation(s)
- Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- Department of Clinical Pathogen Biology, Qiqihaer Medical University, Qiqihaer, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Guo-Zhi Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qian-Qian Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jian-Ling Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Hong Sun
- Department of Pathogen Biology, Qiqihaer Medical University, Qiqihaer, China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Hua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Zhang S, Li C, Feng T, Cao S, Zhou H, Li L, Hu Q, Mao X, Ji S. A Metabolic Profiling Study of Realgar-Induced Acute Kidney Injury in Mice. Front Pharmacol 2021; 12:706249. [PMID: 34497512 PMCID: PMC8419260 DOI: 10.3389/fphar.2021.706249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Realgar has been used as a type of mineral drug that contains arsenic for thousands of years. Previous studies have shown that Realgar-induced acute kidney injury is associated with abnormal metabolism, but the underlying mechanism is poorly understood. The aim of this study is to investigate the metabolic changes in serum and kidney tissues of mice exposed to Realgar by using a metabolomic approach and explore the molecular mechanisms of acute kidney injury induced by Realgar. Forty mice were randomly divided into four groups: Control group, 0.5-, 1.0, and 2.0 g/kg Realgar group. After 1 week, the body weight and kidney weight of the mice were measured. The serum and kidney samples were used for LC-MS spectroscopic metabolic profiling. Principal component analysis (PCA), correlation analysis, and pathway analysis were used to detect the nephrotoxic effects of Realgar. Body weight decreased significantly in the 2.0 g/kg group, and the kidney weight index also showed a dose-dependent increase in Realgar. The PCA score plot showed the serum and kidney tissue metabolic profile of mice exposed to 2.0 g/kg Realgar separated from the control group, while the lower-doses of 0.5 g/kg and 1.0 g/kg Realgar shown a similar view to the Control group. Thirty-three metabolites and seventeen metabolites were screened and identified in the serum and kidney of mice in a dose-dependent manner. respectively. Correlation analysis showed a strong correlation among these metabolites. Amino acid metabolism, lipid metabolism, glutathione metabolism, and purine metabolism pathways were found to be mainly associated with Realgar nephrotoxicity. This work illustrated the metabolic alterations in Realgar-induced nephrotoxic mice through a metabolomic approach.
Collapse
Affiliation(s)
- Sheng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Chao Li
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Feng
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Shuai Cao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Limin Li
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Shen Ji
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, China
| |
Collapse
|
5
|
Zhang W, Huo T, Li A, Wu X, Feng C, Liu J, Jiang H. Identification of neurotoxicity markers induced by realgar exposure in the mouse cerebral cortex using lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121567. [PMID: 32061421 DOI: 10.1016/j.jhazmat.2019.121567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Realgar is a traditional Chinese medicine containing arsenic and has neurotoxicity. This study used realgar exposure mice model, neurobehavioral tests, analytical chemistry, molecular biology and nontargeted lipidomics to explore the mechanism of realgar damages the nervous system. The arsenic contained in realgar passed through the BBB and accumulated in the brain. Neurons, synapses and myelin showed abnormal changes in the cerebral cortex. The number of autophagosomes were incresed as well as levels of MDA, Lp-PLA2, and cPLA2 but the CAT level was significant reduced. Finally, the cognition and memory of mice were decreased. Nontargeted lipidomics detected 34 lipid subclasses including 1603 lipid molecules. The levels of the LPC and LPE were significantly increased. Under the condition of variable importance for the projection (VIP)>1 and P < 0.05, only 28 lipid molecules satisfied the criteria. The lipid molecular markers SM (d36:2), PE (18:2/22:6) and PE (36:3) which were filtered by receiver operating characteristic (ROC) curve (AUC>0.8 or AUC<0.2) were used to identify the neurotoxicity induced by realgar. Therefore, realgar induces neurotoxicity through exacerbating oxidative damage and lipid dysfunction. Providing research basis for the clinical diagnosis and treatment of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinyu Wu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
6
|
Ohigashi T, Kanno K, Sugiyama A, Nguyen PT, Kishikawa N, Otani Y, Kobayashi T, Matsuo H, Tazuma S. Protective effect of phosphatidylcholine on lysophosphatidylcholine‐induced cellular senescence in cholangiocyte. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2019; 26:568-577. [DOI: 10.1002/jhbp.684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Toshikazu Ohigashi
- Department of Pharmaceutical Services Hiroshima University Hospital Hiroshima Japan
| | - Keishi Kanno
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| | - Phuong Thao Nguyen
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| | - Yuichiro Otani
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services Hiroshima University Hospital Hiroshima Japan
| | - Susumu Tazuma
- Department of General Internal Medicine Hiroshima University Hospital 1‐2‐3 Kasumi, Minami‐ku Hiroshima734‐8551Japan
| |
Collapse
|
7
|
Shimizu R, Kanno K, Sugiyama A, Ohata H, Araki A, Kishikawa N, Kimura Y, Yamamoto H, Kodama M, Kihira K, Tazuma S. Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:675-82. [PMID: 25921542 DOI: 10.1002/jhbp.256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND The incidence of biliary tract cancer in patients with pancreaticobiliary maljunction or intrahepatic cholelithiasis is markedly high with undefined mechanism. In these diseases, biliary lysophosphatidylcholine (LPC) level is reportedly increased. This study investigated the influence of LPC on cholangiocytes focusing on cellular senescence and its potential contribution to carcinogenesis. METHODS Cultured MMNK-1, an immortalized human cholangiocyte was treated with LPC in vitro and its effect was evaluated. RESULTS Lysophosphatidylcholine demonstrated cytotoxicity with generation of intracellular reactive oxygen species. Accordingly, LPC provoked oxidative DNA injury, whereas the gene expressions of DNA repair enzyme (OGG1, MUTYH, MTH1) remained unchanged. Interestingly, LPC caused global DNA hypomethylation, which is frequently observed in cancer tissues. Microarray analysis identified differentially regulated genes in response to LPC, which included the components of senescence-associated secretory phenotype (SASP) including interleukin-8 (IL-8), IL-6, transforming growth factor-β and plasminogen activator inhibitor-1. Significant induction of these genes was further confirmed by quantitative real-time polymerase chain reaction. In addition to upregulation of p21 gene expression, senescence-associated beta-galactosidase activity, a widely used marker of cellular senescence was significantly induced by the treatment of LPC. CONCLUSIONS Based on these data, cholangiocyte senescence and SASP caused by LPC are potential pathogenic mechanisms in the development of biliary tract cancer.
Collapse
Affiliation(s)
- Rina Shimizu
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku,, Hiroshima, 734-8551, Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku,, Hiroshima, 734-8551, Japan
| | - Hiroki Ohata
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Anna Araki
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku,, Hiroshima, 734-8551, Japan
| | - Yasuhiro Kimura
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroya Yamamoto
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Masanobu Kodama
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Kenji Kihira
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku,, Hiroshima, 734-8551, Japan
| |
Collapse
|