1
|
Doan NQH, Nguyen NTK, Duong VB, Nguyen HTT, Vong LB, Duong DN, Nguyen NTT, Nguyen TLT, Do TTH, Truong TN. Synthesis, Biological Evaluation, and Molecular Modeling Studies of 1-Aryl-1 H-pyrazole-Fused Curcumin Analogues as Anticancer Agents. ACS OMEGA 2022; 7:33963-33984. [PMID: 36188331 PMCID: PMC9520563 DOI: 10.1021/acsomega.2c02933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/08/2022] [Indexed: 05/28/2023]
Abstract
Addressing the growing burden of cancer and the shortcomings of chemotherapy in cancer treatment are the current research goals. Research to overcome the limitations of curcumin and to improve its anticancer activity via its heterocycle-fused monocarbonyl analogues (MACs) has immense potential. In this study, 32 asymmetric MACs fused with 1-aryl-1H-pyrazole (7a-10h) were synthesized and characterized to develop new curcumin analogues. Subsequently, via initial screening for cytotoxic activity, nine compounds exhibited potential growth inhibition against MDA-MB-231 (IC50 2.43-7.84 μM) and HepG2 (IC50 4.98-14.65 μM), in which seven compounds showing higher selectivities on two cancer cell lines than the noncancerous LLC-PK1 were selected for cell-free in vitro screening for effects on microtubule assembly activity. Among those, compounds 7d, 7h, and 10c showed effective inhibitions of microtubule assembly at 20.0 μM (40.76-52.03%), indicating that they could act as microtubule-destabilizing agents. From the screening results, three most potential compounds, 7d, 7h, and 10c, were selected for further evaluation of cellular effects on breast cancer MDA-MB-231 cells. The apoptosis-inducing study indicated that these three compounds could cause morphological changes at 1.0 μM and could enhance caspase-3 activity (1.33-1.57 times) at 10.0 μM in MDA-MB-231 cells, confirming their apoptosis-inducing activities. Additionally, in cell cycle analysis, compounds 7d and 7h at 2.5 μM and 10c at 5.0 μM also arrested MDA-MB-231 cells in the G2/M phase. Finally, the results from in silico studies revealed that the predicted absorption, distribution, metabolism, excretion, and the toxicity (ADMET) profile of the most potent MACs might have several advantages in addition to potential disadvantages, and compound 7h could bind into (ΔG -10.08 kcal·mol-1) and access wider space at the colchicine-binding site (CBS) than that of colchicine or nocodazole via molecular docking studies. In conclusion, our study serves as a basis for the design of promising synthetic compounds as anticancer agents in the future.
Collapse
Affiliation(s)
- Nam Q. H. Doan
- Faculty
of Pharmacy, Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Ngan T. K. Nguyen
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Vu B. Duong
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Ha T. T. Nguyen
- School
of Biomedical Engineering, International University, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Long B. Vong
- School
of Biomedical Engineering, International University, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Diem N. Duong
- Immunology
Lab, Vaccines and Biologicals Production Department, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Nguyet-Thu T. Nguyen
- Immunology
Lab, Vaccines and Biologicals Production Department, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Tuyen L. T. Nguyen
- Saigon
Pharmaceutical Sciences and Technologies Center, Ho Chi Minh City 700000, Vietnam
| | - Tuoi T. H. Do
- Department
of Pharmacology, Faculty of Pharmacy, University
of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Tuyen N. Truong
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
2
|
Pelipko VV, Gomonov KA. Formation of five- and six-membered nitrogen-containing heterocycles on the basis of hydrazones derived from α-dicarbonyl compounds (microreview). Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02958-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Pokhodylo NT, Shyyka OY, Obushak MD. Convenient synthetic path to ethyl 1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates and 1-aryl-1,5-dihydro-4H-[1,2,3]triazolo[4,5-d]pyridazin-4-ones. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2348-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Devi N, Shankar R, Singh V. 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-fused/Substituted Frameworks. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nisha Devi
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology; Jalandhar 144011 India
| | - Ravi Shankar
- Bio-Organic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu 180001 India
| | - Virender Singh
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology; Jalandhar 144011 India
| |
Collapse
|