1
|
Tang X, Lei L, Liao A, Sun W, Zhang J, Wu J. Morpholine Derivatives in Agrochemical Discovery and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13197-13208. [PMID: 37583294 DOI: 10.1021/acs.jafc.3c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Derivatives of morpholine are biologically active organic compounds with special structures discovered in multiple drugs. As a result of the terminal pharmacophore of action and extraordinary activity, they attracted fair attention with regard to pesticide innovation and development. Analysis of brief structure-activity relationships and the summarization of the characteristics of pesticides containing morpholine fragments with efficient activity are key steps in the development of novel pesticides. This review primarily overviews morpholine compounds with insecticidal, fungicidal, herbicidal, antiviral, and plant growth regulation properties to provide educational insight for the creation of new morpholine-containing compounds.
Collapse
Affiliation(s)
- Xu Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Li Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Anjing Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Jian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
2
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
3
|
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Chemical Research; Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|