1
|
John D, George K, Radhakrishnan EK. A concise update on the synthetic transformation of aurones via asymmetric cycloaddition, annulation, and Michael/Mannich reactions. RSC Adv 2024; 14:6339-6359. [PMID: 38380237 PMCID: PMC10877098 DOI: 10.1039/d3ra08575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
This review provides a comprehensive overview of the significance of aurone cores in organic chemistry, highlighting their crucial role as synthetic intermediates. With their innate electrophilic reactivity and convenient accessibility, aurone cores play a vital role in catalysing the development of novel methodologies and facilitating the creation of intricate compounds. The objective of this review is to present a current and insightful compilation that summarizes the progress in aurone synthetic transformations, focusing on diverse cycloaddition ([3 + 2], [4 + 2], [4 + 3], [10 + 2]) and annulation reactions.
Collapse
Affiliation(s)
- Deepa John
- Department of Chemistry, Vellore Institute of Technology Vellore India
| | - Kevin George
- Department of Chemistry, Vellore Institute of Technology Vellore India
| | | |
Collapse
|
2
|
Saroha B, Kumar G, Arya P, Raghav N, Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg Chem 2023; 140:106805. [PMID: 37634269 DOI: 10.1016/j.bioorg.2023.106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Enzymes are the biological macromolecules that have emerged as an important drug target as their upregulation/imbalance leads to various pathological conditions, such as inflammation, parasitic infection, Alzheimer's, cancer, and many others. Here, we designed and synthesized some morpholine tethered novel aurones and evaluated them as potential inhibitors for CTSB, α-amylase, lipase and activator for trypsin. All the newly synthesized compounds were fully characterized by various spectroscopic techniques (1H NMR, 13C NMR, HRMS) and the Z-configuration to them was assigned based on single crystal XRD data and 1H NMR chemical shift values. Further, the hybrids were evaluated for their intracellular (cathepsin B) and extracellular (trypsin, lipase, amylase) enzyme inhibition potencies. The in-vitro inhibition screening against cathepsin B revealed that most of the synthesized compounds are good competitive inhibitors (% inhibition = 22.91-75.04), with 6q (% inhibition = 75.04) and 6r (% inhibition = 71.13) as the eminent inhibitors of the series. At the same time, they exhibited weak to moderate inhibition towards amylase (% inhibition = 7.22-22.48) and lipase (% inhibition = 16.29-54.83). A significant trypsin activation (% activation = 107.42-196.47) was observed even at the micromolar concentration of the compounds. Furthermore, the drug-modeling studies showed a good correlation between the in-vitro experimental results and the calculated binding affinity of the screened compounds with all the tested enzymes. These findings are expected to provide a new lead in drug development for different pathological disorders wherever these enzymes are involved.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Department of Biomedical Engineering, Oregon Health & Science University (OHSU), 2730 S Moody Ave., Portland, OR 97201
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
3
|
Khorramdelazad H, Bagherzadeh K, Rahimi A, Safari E, Hassanshahi G, Khoshmirsafa M, Karimi M, Mohammadi M, Darehkordi A, Falak R. Antitumor activities of a novel fluorinated small molecule (A1) in CT26 colorectal cancer cells: molecular docking and in vitro studies. J Biomol Struct Dyn 2023; 42:10175-10188. [PMID: 37705281 DOI: 10.1080/07391102.2023.2256406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Chemotherapeutic treatment of colorectal cancer (CRC) has not been satisfactory until now; therefore, the discovery of more efficient medications is of great significance. Based on available knowledge, the CXCL12/CXCR4 axis plays a significant role in tumorigenesis, and inhibition of CXCR4 chemokine receptor with AMD3100 is one of the most known therapeutic modalities in cancer therapy. Herein, N, N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (A1) was synthesized as a potent CXCR4 inhibitor. A1 inhibitory activity was first evaluated employing Molecular Docking simulations in comparison with the most potent CXCR4 inhibitors. Then, the antiproliferative and cytotoxic effect of A1 on CT26 mouse CRC cells was investigated by MTT assay technique and compared with those of the control molecule, AMD3100. The impact of the target compounds IC50 on apoptosis, cell cycle arrest, and CXCR4 expression was determined by flow cytometry technique. Our finding demonstrated that A1 induces a cytotoxic effect on CT26 cells at 60 μg/mL concentration within 72 h and provokes cell apoptosis and G2/M cell cycle arrest in comparison with the untreated cells, while AMD3100 did not show a cytotoxic effect up to 800 μg/mL dose. The obtained results show that A1 (at a concentration of 40 μg/mL) significantly reduced the proliferation of CT26 cells treated with 100 ng/mL of CXCL12 in 72 h. Moreover, treatment with 60 μg/mL of A1 and 100 ng/mL of CXCL12 for 72 h significantly decreased the number of cells expressing the CXCR4 receptor compared to the control group treated with CXCL12. Eventually, the obtained results indicate that A1, as a dual-function fluorinated small molecule, may benefit CRC treatment through inhibition of CXCR4 and exert a cytotoxic effect on tumor cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ali Darehkordi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
5
|
Lathwal E, Kumar S, Kumar Sahoo P, Ghosh S, Mahata S, Nasare VD, Kumar S. Synthesis, cytotoxic evaluation and structure activity relationship of pyrazole hybrid aurones on gastric cancer (AGS) cell lines. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Kumar G, Saroha B, Kumar R, Kumari M, Dalal S, Kumar S. Design, synthesis, biological evaluation, and molecular docking studies of some novel
N
,
N
‐dimethylaminopropoxy‐substituted aurones. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gourav Kumar
- Department of Chemistry Kurukshetra University Kurukshetra India
| | - Bhavna Saroha
- Department of Chemistry Kurukshetra University Kurukshetra India
| | - Ramesh Kumar
- Department of Chemistry Kurukshetra University Kurukshetra India
| | - Meena Kumari
- Department of Chemistry Govt. College for Women, Badhra Charkhi Dadri India
| | - Sunita Dalal
- Department of Biotechnology Kurukshetra University Kurukshetra India
| | - Suresh Kumar
- Department of Chemistry Kurukshetra University Kurukshetra India
| |
Collapse
|
7
|
Hou X, Li JY, Zhao M, Dai C, Li Y, Liu Y. Synthesis, Characterization, and DRAK2 Inhibitory Activities of Hydroxyaurone Derivatives. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Sui G, Li T, Zhang B, Wang R, Hao H, Zhou W. Recent advances on synthesis and biological activities of aurones. Bioorg Med Chem 2020; 29:115895. [PMID: 33271454 DOI: 10.1016/j.bmc.2020.115895] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Aurones are naturally occurring structural isomerides of flavones that have diverse bioactivities including antiviral, antibacterial, antifungal, anti-inflammatory, antitumor, antimalarial, antioxidant, neuropharmacological activities and so on. They constitute an important class of pharmacologically active scaffolds that exhibit multiple biological activities via diverse mechanisms. This review article provides an update on the recent advances (2013-2020.4) in the synthesis and biological activities of these derivatives. In the cases where sufficient information is available, some important structure-activity relationships (SAR) of their biological activities were presented, and on the strength of our expertise in medicinal chemistry and careful analysis of the recent literature, for the potential of aurones as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Guoqing Sui
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Tian Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Bingyu Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ruizhi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Hongdong Hao
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Wenming Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
Kumar G, Lathwal E, Saroha B, Kumar S, Kumar S, Chauhan NS, Kumar T. Synthesis and Biological Evaluation of Quinoline‐Based Novel Aurones. ChemistrySelect 2020. [DOI: 10.1002/slct.201904912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gourav Kumar
- Department of ChemistryKurukshetra University Kurukshetra Haryana India 136119
| | - Ekta Lathwal
- Department of ChemistryKurukshetra University Kurukshetra Haryana India 136119
| | - Bhavna Saroha
- Department of ChemistryKurukshetra University Kurukshetra Haryana India 136119
| | - Sanjeev Kumar
- Department of ChemistryKurukshetra University Kurukshetra Haryana India 136119
| | - Suresh Kumar
- Department of ChemistryKurukshetra University Kurukshetra Haryana India 136119
| | - Nar Singh Chauhan
- Department of BiochemistryMaharshi Dayanand University Rohtak Haryana India 124001
| | - Tarun Kumar
- Department of BiochemistryMaharshi Dayanand University Rohtak Haryana India 124001
| |
Collapse
|
10
|
Irshad M, Ali Q, Iram F, Ahamad SA, Saleem M, Saadia M, Batool M, Kanwal A, Tabassum S. Aurones and Analogues: Promising Heterocyclic Scaffolds for Development of Antioxidant and Antimicrobial Agents. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219070235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019; 166:417-431. [PMID: 30739824 DOI: 10.1016/j.ejmech.2019.01.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Aurones are very simple, promising anticancer lead molecules containing three rings (A, B and C). A very slight structural variation in the aurones elicits diverse affinity and specificity towards different molecular targets. The present review discusses the design, discovery and development of natural and synthetic aurones as small molecule anticancer agents. Detailed structure-activity relationship and intermolecular interactions at different targets are also discussed. Due to their rare occurrence in nature and minimal mention in literature, the anticancer potential of aurones is rather recent but in constant progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Naseem Begum
- College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
13
|
Hassan GS, Georgey HH, George RF, Mohamed ER. Aurones and furoaurones: Biological activities and synthesis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bfopcu.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Nigam S, Jayashree BS. Limitation of Algar–Flynn–Oyamada reaction using methoxy substituted chalcones as reactants and evaluation of the newly transformed aurones for their biological activities. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Lucas SD, Carrasco MP, Gonçalves LM, Moreira R, Guedes RC. Discovery of C-shaped aurone human neutrophil elastase inhibitors. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00164a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aurones were discovered as sub-micromolar HNE inhibitors. The activity is rationalized by a C-shape conformation that allows tight binding to HNE S1 and S2 pockets.
Collapse
Affiliation(s)
- S. D. Lucas
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - M. P. Carrasco
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - L. M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - R. Moreira
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - R. C. Guedes
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|