1
|
Alazemi AM, Dawood KM, Al-Matar HM, Tohamy WM. Clean and Efficient Green Protocol of N, N'-Bis(2-(arylazo)-2-(aroyl)vinyl)ethane-1,2-diamines in Aqueous Medium without Catalyst: Synthesis and Photophysical Characterization. ACS OMEGA 2024; 9:47532-47542. [PMID: 39651086 PMCID: PMC11618421 DOI: 10.1021/acsomega.4c06250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024]
Abstract
An interesting platform for the construction of novel N,N'-bis(2-(arylazo)-2-(aroyl)vinyl)ethane-1,2-diamines is reported in this work. These bis-arylazo compounds were assembled based on the reaction of ethylenediamine with various 2-arylhydrazono-3-oxopropanals in aqueous conditions under both conventional stirring and microwave conditions at ambient temperature. The factors affecting the optimization conditions were intensively practiced. The structures of the new products were established from their spectroscopic analyses and X-ray single crystals. The photophysical behavior of the bis-arylazo derivatives was examined. The UV-vis spectra showed maximum absorption band in the range of 348-383 nm with molar extinction coefficients ranging from 0.89 × 104 to 4.02 × 104 M-1 cm-1. The highest molar absorptivity coefficient (∼45 × 103 M-1 cm-1) was observed in CHCl3 solvent. The fluorescence properties showed that some compounds were interesting fluorophore materials with high Stokes shifts. The photoluminescence study of some compounds was promising, with maximal emission peaks ranging between 417-436 nm.
Collapse
Affiliation(s)
- Abdulrahman M. Alazemi
- Chemistry
Department, Faculty of Science, University
of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | - Kamal M. Dawood
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Hamad M. Al-Matar
- Chemistry
Department, Faculty of Science, University
of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | - Wael M. Tohamy
- Chemistry
Department, Faculty of Science, University
of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
2
|
Alazemi AM, Dawood KM, Al-Matar HM, Tohamy WM. Microwave-assisted chemoselective synthesis and photophysical properties of 2-arylazo-biphenyl-4-carboxamides from hydrazonals. RSC Adv 2023; 13:25054-25068. [PMID: 37614785 PMCID: PMC10442861 DOI: 10.1039/d3ra04558g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
The reaction of 3-oxo-2-arylhydrazonopropanals with acetoacetanilide in an equimolar ratio, under DBU/1,4-dioxane/microwave irradiation reaction conditions, resulted in chemoselective formation of 4-arylazo-5-hydroxy-benzamide derivatives. The structures of the obtained biphenyl-4-carboxamides were characterized by several spectroscopic techniques including IR, 1H- and 13C-NMR, MS and HRMS, and X-ray single crystals of three examples. The photophysical properties of the new products were also evaluated, with a particular focus on their absorption and emission spectra, which provided valuable information regarding their optical properties. The new compounds emitted 513-549 nm green fluorescence in acetone solution under UV irradiation.
Collapse
Affiliation(s)
- Abdulrahman M Alazemi
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| | - Hamad M Al-Matar
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
| | - Wael M Tohamy
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
- Organometallic and Organometalloid Chemistry Department, National Research Centre Cairo Egypt
| |
Collapse
|
3
|
Alazemi AM, Dawood KM, Al-Matar HM, Tohamy WM. Efficient and Recyclable Solid-Supported Pd(II) Catalyst for Microwave-Assisted Suzuki Cross-Coupling in Aqueous Medium. ACS OMEGA 2022; 7:28831-28848. [PMID: 36033663 PMCID: PMC9404494 DOI: 10.1021/acsomega.2c01809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/22/2022] [Indexed: 05/22/2023]
Abstract
Solid-supported catalysts play efficient and crucial roles in organic synthesis. A solid-supported palladium(II) complex based on chitosan was synthesized and fully characterized using all possible tools (Fourier transform infrared spectroscopy, thermogravimetry analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller analysis). The catalytic activity of the solid-phase catalyst in Suzuki cross-coupling reactions was evaluated in aqueous solvents under both conventional heating and microwave irradiation conditions. The recyclability and thermal stability of the prepared catalyst were also examined, and the catalyst was found to be active till five consecutive runs without a notable loss of activity under the microwave condition, with the turnover number and turnover frequency values reaching 19,019 and 114,114 h-1, respectively.
Collapse
Affiliation(s)
- Abdulrahman M. Alazemi
- Chemistry
Department, Faculty of Science, University
of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
- . Fax: +965 24816482
| | - Kamal M. Dawood
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
- , . Fax: +202 35727556
| | - Hamad M. Al-Matar
- Chemistry
Department, Faculty of Science, University
of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
| | - Wael M. Tohamy
- Chemistry
Department, Faculty of Science, University
of Kuwait, P.O. Box 5969, Safat 13060, Kuwait
- Organometallic
and Organometalloid Chemistry Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
4
|
Dawood KM, Alaasar M. Transition Metals Catalyzed Heteroannulation Reactions in Aqueous Medium. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamal M. Dawood
- Cairo University Faculty of Science Chemistry Giza street 12613 Giza EGYPT
| | - Mohamed Alaasar
- Martin Luther University Halle-Wittenberg Faculty I of Natural Science - Biological Science: Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat I Biowissenschaften Institute of Chemistry Halle GERMANY
| |
Collapse
|
5
|
Aminkhani A, Sharifi S. Solvent-Free Synthesis of Pyrrolo [2,1-α] Isoquinolines via One-Pot Four-
Component Reaction. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210805103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
An efficient four-component reaction to synthesize pyrrolo [2,1-a] isoquinolines from
malononitrile, aromatic aldehydes, isoquinoline, and cyclohexyl isocyanide under solvent-free
conditions is described. In a convenient, simple, and efficient one-pot procedure, the domino
Knoevenagel-nucleophilic cycloaddition reaction affords excellent yields of products in less
than 1 h.
Collapse
Affiliation(s)
- Ali Aminkhani
- Department of Chemistry, Khoy Branch, Islamic Azad University, Khoy, Iran
| | - Sina Sharifi
- Department of Ophthalmology, Massachusetts
Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, MA, USA
| |
Collapse
|
6
|
Li Z, Xu N, Guo N, Zhou Y, Lin L, Feng X. Asymmetric Catalytic Synthesis of Hexahydropyrrolo-isoquinolines via Three-Component 1,3-Dipolar-Cycloaddition. Chemistry 2021; 27:14841-14845. [PMID: 34398497 DOI: 10.1002/chem.202102476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/10/2022]
Abstract
An asymmetric three-component 1,3-dipolar cycloaddition of 3,4-dihydroisoquinolines, bromoacetates and α,β-unsaturated pyrazole amide is realized by using a chiral N,N'-dioxide-Y(OTf)3 complex as the catalyst. The process includes a base-promoted formation of dihydroisoquinolium ylides in situ, and a chiral Lewis acid-catalyzed asymmetric [3+2] cycloaddition with α,β-unsaturated pyrazole amides. A series of hexahydropyrrolo-isoquinolines are obtained in moderate to good yields with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Zhaojing Li
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Nian Xu
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Ning Guo
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
7
|
Fahim AM, Elshikh MS, Darwish NM. Synthesis, Antitumor Activity, Molecular Docking and DFT Study of Novel Pyrimidiopyrazole Derivatives. Curr Comput Aided Drug Des 2021; 16:486-499. [PMID: 31288728 DOI: 10.2174/1573409915666190710094425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In this investigation, 2-cyano-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl) acetamide (3) reacts with dimethylformamide dimethyl acetal (DMF-DMA) to afford the corresponding (E)- 2-cyano-3-(dimethylamino)-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylam-ide (4) utilizing microwave irradiation. The condensation reactions of acrylamide derivative 4 with hydrazine derivatives obtain pyrazole derivatives 6a and 6b; respectively. The synthesized compounds demonstrate in vitro antitumor activity against liver tumor cell line HepG2. Furthermore, additional studies were carried out on the most effective compound 6b to evaluate the potential interaction against 4hdq synthase complex with ΔE= -4.5Kcal/mol and with short distance = 1.727Å and 2.027Å, respectively. The comprehensive theoretical studies of compounds 6a and 6b is based on bond length, bond angles and energy gap HOMO-LUMO. In addition, the vibrational frequencies of optimized compounds 6a and 6b were examined through DFT/B3LYP/6+31G(d) basis set. METHODS In this research, synthesis of novel pyrimidiopyrazole derivatives calculated the computational studies to find suitable drug-receptor interactions and biological activity. RESULTS AND DISCUSSION The synthesized pyrimidiopyrazole derivative 6b exhibited high antitumor activity IC50 =12.6 μg/ml and interacted it with 4hdq synthase complex with ΔE=-4.5Kcal/mol and with short distance = 1.727Å and 2.027Å. Furthermore, the optimized compounds utilize Gaussian 09W. CONCLUSION In the optimized pyrimidiopyrazole derivatives, 6b showed better antitumor activity HeG-2 against 5-flurouracil due to its energy and confirmed more potent of hydrogen bond interaction with protein pocket.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Green Chemistry Department, National Research Center, Dokki, P.O. Box. 12622 Cairo, Egypt
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Noura M Darwish
- Biochemistry Department, Faculty of Science Ain Shams University, Abbasaya, P.O. Box. 11566, Cairo, Egypt
| |
Collapse
|
8
|
Soleimani Amiri S. Green production and antioxidant activity study of new pyrrolo[2,1‐a]isoquinolines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Funt LD, Novikov MS, Khlebnikov AF. New applications of pyridinium ylides toward heterocyclic synthesis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Liu S, Ma D, Zhu X, Luo C, Tan H, Ju X, Tan X, Tang X, Huang J, Wang J, Wang X, Cui H. Iron Catalyzed [3+2] Cycloaddition of Tetrahydroisoquinoline: Synthesis of Dihydropyrrolo[2,1‐
a
]isoquinolines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Si‐Wei Liu
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
- Tonichem Pharmaceutical Technology Co., Ltd Huizhou 516008 P. R. China
| | - Dan‐Dan Ma
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Xin‐Xin Zhu
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Cheng‐Dan Luo
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Hui‐Lin Tan
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Xiao‐Li Ju
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Xue Tan
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Xiao‐Hui Tang
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Jie Huang
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Jia Wang
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| | - Xian‐Xun Wang
- Tonichem Pharmaceutical Technology Co., Ltd Huizhou 516008 P. R. China
| | - Hai‐Lei Cui
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P. R. China
| |
Collapse
|
11
|
Shaaban MR, Farghaly TA, Khormi AY, Farag AM. Recent Advances in Synthesis and Uses of Heterocycles-based Palladium(II) Complexes as Robust, Stable, and Low-cost Catalysts for Suzuki- Miyaura Crosscouplings. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190620121845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-C cross-couplings constitute the largest diversity of organic reactions of chemical, biomedical, and industrial significance. They are also among the most frequently encountered reactions used in the synthesis of numerous drugs and relevant pharmaceutical substances. Development of an easily accessed, efficient, stable, and low cost catalyst is an attractive area of research in such kind of organic synthesis. This review highlights the remarkable and recent achievements made recently in the synthesis and use of palladium(II) complexes catalysts, that are based on heterocycles as ligands in their constitution, in the Suzuki-Miyaura cross-coupling.
Collapse
Affiliation(s)
- Mohamed R. Shaaban
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thoraya. A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afaf Y. Khormi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Ahmad M. Farag
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Pyrrolo[2,1- a]isoquinoline scaffold in drug discovery: advances in synthesis and medicinal chemistry. Future Med Chem 2019; 11:2735-2755. [PMID: 31556691 DOI: 10.4155/fmc-2019-0136] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pyrrolo[2,1-a]isoquinoline (PIq) is a nitrogen heterocyclic scaffold of diverse alkaloids endowed with several biological activities, including antiretroviral and antitumor activities. Several 5,6-dihydro-PIq (DHPIq) alkaloids, belonging to the lamellarins' family, have proved to be cytotoxic to tumor cells, as well as reversers of multidrug resistance. In this review, we provide an overview of the main achievements over the last decade in the synthetic approaches to access libraries of PIq compounds along with a survey, as comprehensive as possible, of bioactivity, mechanism of action, pharmacophore and structure-activity relationships of synthetic analogs of DHPIq-based alkaloids. The focus is mainly on the potential exploitation of the (DH)PIq scaffold in design and development of novel antitumor drugs.
Collapse
|
13
|
Farag AM, Fahim AM. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|