1
|
Sirakanyan S, Arabyan E, Hakobyan A, Hakobyan T, Chilingaryan G, Sahakyan H, Sargsyan A, Arakelov G, Nazaryan K, Izmailyan R, Abroyan L, Karalyan Z, Arakelova E, Hakobyan E, Hovakimyan A, Serobian A, Neves M, Ferreira J, Ferreira F, Zakaryan H. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity. Emerg Microbes Infect 2021; 10:783-796. [PMID: 33706677 PMCID: PMC8079068 DOI: 10.1080/22221751.2021.1902751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
African swine fever virus (ASFV) is the causal agent of a fatal disease of domestic swine for which no effective antiviral drugs are available. Recently, it has been shown that microtubule-targeting agents hamper the infection cycle of different viruses. In this study, we conducted in silico screening against the colchicine binding site (CBS) of tubulin and found three new compounds with anti-ASFV activity. The most promising antiviral compound (6b) reduced ASFV replication in a dose-dependent manner (IC50 = 19.5 μM) with no cellular (CC50 > 500 μM) and animal toxicity (up to 100 mg/kg). Results also revealed that compound 6b interfered with ASFV attachment, internalization and egress, with time-of-addition assays, showing that compound 6b has higher antiviral effects when added within 2-8 h post-infection. This compound significantly inhibited viral DNA replication and disrupted viral protein synthesis. Experiments with ASFV-infected porcine macrophages disclosed that antiviral effects of the compound 6b were similar to its effects in Vero cells. Tubulin polymerization assay and confocal microscopy demonstrated that compound 6b promoted tubulin polymerization, acting as a microtubule-stabilizing, rather than a destabilizing agent in cells. In conclusion, this work emphasizes the idea that microtubules can be targets for drug development against ASFV.
Collapse
Affiliation(s)
- Samvel Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Erik Arabyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Astghik Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Tamara Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Garri Chilingaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Harutyun Sahakyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Arsen Sargsyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Grigor Arakelov
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Karen Nazaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Roza Izmailyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Liana Abroyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Zaven Karalyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia
| | - Elina Arakelova
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Elmira Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Anush Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Andre Serobian
- Advanced Solutions Center, Foundation for Armenian Science and Technology, Yerevan, Armenia
| | - Marco Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fernando Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Hovakim Zakaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Denovo Sciences, Yerevan, Armenia
| |
Collapse
|
2
|
Sirakanyan SN, Spinelli D, Geronikaki A, Kartsev V, Hakobyan EK, Petrou A, Paronikyan RG, Nazaryan IM, Akopyan HH, Hovakimyan AA. Synthesis and Neurotropic Activity of New Heterocyclic Systems: Pyridofuro[3,2- d]pyrrolo[1,2- a]pyrimidines, Pyridofuro[3,2- d]pyrido[1,2- a]pyrimidines and Pyridofuro[3',2':4,5]pyrimido[1,2- a]azepines. Molecules 2021; 26:molecules26113320. [PMID: 34205930 PMCID: PMC8198642 DOI: 10.3390/molecules26113320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. Objective: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. Methods: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. Results: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of “open field” and “elevated plus maze” (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of “forced swimming” (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at −7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. Conclusions: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.
Collapse
Affiliation(s)
- Samvel N. Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (R.G.P.); (I.M.N.); (H.H.A.); (A.A.H.)
- Correspondence: (S.N.S.); (D.S.); (A.G.); Tel.: +374-91-32-15-99 (S.N.S.); +39-051-209-9478 (D.S.); +30-2310997616 (A.G.)
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.N.S.); (D.S.); (A.G.); Tel.: +374-91-32-15-99 (S.N.S.); +39-051-209-9478 (D.S.); +30-2310997616 (A.G.)
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (S.N.S.); (D.S.); (A.G.); Tel.: +374-91-32-15-99 (S.N.S.); +39-051-209-9478 (D.S.); +30-2310997616 (A.G.)
| | | | - Elmira K. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (R.G.P.); (I.M.N.); (H.H.A.); (A.A.H.)
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ruzanna G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (R.G.P.); (I.M.N.); (H.H.A.); (A.A.H.)
| | - Ivetta M. Nazaryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (R.G.P.); (I.M.N.); (H.H.A.); (A.A.H.)
| | - Hasmik H. Akopyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (R.G.P.); (I.M.N.); (H.H.A.); (A.A.H.)
| | - Anush A. Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.K.H.); (R.G.P.); (I.M.N.); (H.H.A.); (A.A.H.)
| |
Collapse
|
3
|
Sirakanyan SN, Ghazaryan SG, Hakobyan EK, Hovakimyan AA. Synthesis and Transformations of Oxy Amides Derived from Cycloalka[c]- and Pyrano[3,4-c]pyridines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Sirakanyan SN, Spinelli D, Geronikaki A, Kartsev VG, Hakobyan EK, Hovakimyan AA. Synthesis and antimicrobial activity of new derivatives of pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidine and new heterocyclic systems. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1595659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Samvel N. Sirakanyan
- Institute of Fine Organic Chemistry of A.L.Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Republic of Armenia, Yerevan, Armenia
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Elmira K. Hakobyan
- Institute of Fine Organic Chemistry of A.L.Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Republic of Armenia, Yerevan, Armenia
| | - Anush A. Hovakimyan
- Institute of Fine Organic Chemistry of A.L.Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Republic of Armenia, Yerevan, Armenia
| |
Collapse
|