1
|
Salem ME, Abdelhamid IA, Elwahy AH, Ragheb MA, Alqahtani AS, Zaki ME, Algethami FK, Mahmoud HK. Novel hybrid thiazoles, bis-thiazoles linked to azo-sulfamethoxazole: Synthesis, docking, and antimicrobial activity. Heliyon 2024; 10:e31082. [PMID: 38813143 PMCID: PMC11133767 DOI: 10.1016/j.heliyon.2024.e31082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
The reaction of sulfamethoxazolehydrazonoyl chloride with thiosemicarbazones, bis-thiosemicarbazones, or 4-amino-3-mercapto-1,2,4-triazole in dioxane in the presence of triethylamine as a basic catalyst at reflux resulted in the regioselective synthesis of thiazoles and bis-thiazoles linked to azo-sulfamethoxazole as novel hybrid molecules. The structures of the new compounds were confirmed using a range of spectra. Each compound's antibacterial properties were evaluated using the agar well-diffusion technique, and most of them demonstrated significant potency. In silico investigations revealed that the described compounds had strong interactions with the binding sites of MurE ligase, tyrosyl-tRNA synthetase, and dihydropteroate synthase, demonstrating inhibitory activity.
Collapse
Affiliation(s)
- Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A. Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H.M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Arwa sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Magdi E.A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Faisal K. Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Huda Kamel Mahmoud
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Salem ME, Abdullah AH, Zaki MEA, Abdelhamid IA, Elwahy AHM. Utility of 2-Chloro- N-arylacetamide and 1,1'-(Piperazine-1,4-diyl)bis(2-chloroethanone) as Versatile Precursors for Novel Mono- and Bis[thienopyridines]. ACS OMEGA 2024; 9:10146-10159. [PMID: 38463260 PMCID: PMC10918660 DOI: 10.1021/acsomega.3c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
A series of novel thieno[2,3-b]pyridines linked to N-aryl carboxamides or (carbonylphenoxy)-N-(aryl)acetamides, as well as bis(thieno[2,3-b]pyridines) linked to piperazine core via methanone or carbonylphenoxyethanone units, were synthesized by treating the appropriate chloroacetyl- or bis-bromoacetyl derivatives with 2-mercaptonicotinonitrile derivatives in ethanolic sodium ethoxide at reflux. The spectral data were used to determine the compositions of novel compounds.
Collapse
Affiliation(s)
- Mostafa E Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abbas H Abdullah
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Salem M, El-Gabry YA, Abdelhamid IA, Elwahy AHM, Zaki MEA, Diab HM. Synthesis of Novel Diphenyl Ether-Based Bis-Heterocycles as Novel Hybrid Molecules via Michael and Other Cyclocondensation Reactions. ACS OMEGA 2024; 9:4073-4084. [PMID: 38284066 PMCID: PMC10809258 DOI: 10.1021/acsomega.3c09081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Molecular hybridization is a technique used in drug creation that involves combining the pharmacophoric moieties of multiple bioactive compounds to create a new hybrid molecule with better affinity and effectiveness. In this regard, we created unique hybrid molecules out of diphenyl ether-linked fused pyrans and other heterocycles. The Michael reaction of 4,4'-oxydibenzaldehyde with malononitrile and various active methylene derivatives, as well as enaminone derivatives, produced the matching bis-fused pyrans and fused pyridines, both connected to a diphenyl ether moiety. Furthermore, the acid-catalyzed reaction of 4,4'-oxydibenzaldehyde with dimedone or β-naphthol produced the corresponding new bis(hexahydro-1H-xanthene-1,8-dione) and bis(14H-dibenzo[a,j]xanthene). The processes by which the target products are formed were also examined.
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Yassmen A. El-Gabry
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Ismail A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Ahmed H. M. Elwahy
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Magdi E. A. Zaki
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hadeer M. Diab
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
4
|
Salem M, Abdullah AH, Ibrahim NS, Zaki MEA, Elwahy AHM, Abdelhamid IA. Novel Scaffolds Based on Bis-thiazole Connected to Quinoxaline or Thienothiophene through 2-Phenoxy- N-arylacetamide Groups as New Hybrid Molecules: Synthesis, Antibacterial Activity, and Molecular Docking Investigations. ACS OMEGA 2023; 8:44312-44327. [PMID: 38027350 PMCID: PMC10666262 DOI: 10.1021/acsomega.3c07125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The resistance of microorganisms to antimicrobials has endangered the health of many people across the world. Overcoming the resistance problem will require the invention of molecules with a new mechanism of action so that no cross-resistance with existing therapies occurs. Because of their powerful antibacterial activity against a wide spectrum of Gram-positive and Gram-negative bacterial strains, heterocyclic compounds are appealing candidates for medicinal chemists. In this regard, as unique hybrid compounds, we synthesized a novel family of bis-thiazoles linked to quinoxaline or thienothiophene via the 2-phenoxy-N-arylacetamide moiety. The target compounds were synthesized by reacting the relevant bis(α-haloketones) with the corresponding thiosemicarbazones in EtOH at reflux with a few drops of TEA. Under comparable reaction conditions, the isomeric bis(thiazoles) were synthesized by reacting the appropriate bis(thiosemicarbazone) with the respective α-haloketones. The structures of the novel compounds were confirmed using elements and spectral data. All of the synthesized compounds were tested for antibacterial activity in vitro. With an inhibitory zone width of 12 mm, compound 12a had the same activity as the reference medication tobramycin against Staphylococcus aureus. Compound 12b showed 20 mg/mL as a minimum inhibitory concentration (MIC) against Bacillus subtilis. Some of the synthesized compounds were tested via molecular docking against two bacterial proteins (dihydrofolate reductase and tyrosyl-tRNA synthetase).
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Abbas H. Abdullah
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Nada S. Ibrahim
- Department
of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E. A. Zaki
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Ahmed H. M. Elwahy
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Ismail A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
5
|
Salem ME, Mahrous EM, Ragab EA, Nafie MS, Dawood KM. Synthesis of novel mono- and bis-pyrazolylthiazole derivatives as anti-liver cancer agents through EGFR/HER2 target inhibition. BMC Chem 2023; 17:51. [PMID: 37291635 DOI: 10.1186/s13065-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 06/10/2023] Open
Abstract
3-Bromoacetyl-4-(2-naphthoyl)-1-phenyl-1H-pyrazole (6) was synthesized from 2-acetylnaphthalene and was used as a new key building block for constructing the title targets. Thus, the reaction of 6 with the thiosemicarbazones 7a-d and 9-11 afforded the corresponding simple naphthoyl-(3-pyrazolyl)thiazole hybrids 8a-d and 12 ~ 14. The symmetric bis-(2-naphthoyl-pyrazol-3-yl)thiazol-2-yl)hydrazono)methyl)phenoxy)alkanes 18a-c and 21a-c were similarly synthesized from reaction of 6 with the appropriate bis-thiosemicarbazones 17a-c and 19a-c, respectively. The synthesized two series of simple and symmetrical bis-molecular hybrid merging naphthalene, thiazole, and pyrazole were evaluated for their cytotoxicity. Compounds 18b,c and 21a showed the most potent cytotoxicity (IC50 = 0.97-3.57 µM) compared to Lapatinib (IC50 = 7.45 µM). Additionally, they were safe (non-cytotoxic) against the THLE2 cells with higher IC50 values. Compounds 18c exhibited promising EGFR and HER-2 inhibitory activities with IC50 = 4.98 and 9.85 nM, respectively, compared to Lapatinib (IC50 = 6.1 and 17.2 nM). Apoptosis investigation revealed that 18c significantly activated apoptotic cell death in HepG2 cells, increasing the death rate by 63.6-fold and arresting cell proliferation at the S-phase. Compound 18c upregulated P53 by 8.6-fold, Bax by 8.9-fold, caspase-3,8,9 by 9, 2.3, and 7.6-fold, while it inhibited the Bcl-2 expression by 0.34-fold. Thereby, compound 18c exhibited promising cytotoxicity against EGFR/HER2 inhibition against liver cancer.
Collapse
Affiliation(s)
- Mostafa E Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Esraa M Mahrous
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman A Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed S Nafie
- Department of Chemistry (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
6
|
Elwahy AHM, Ginidi ARS, Shaaban MR, Farag AM, Salem ME. Synthesis of novel bis-thiazoles, bis-thienopyridines, and bis-triazolothiadiazines linked to diphenyl ether core as novel hybrid molecules. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed R. S. Ginidi
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed R. Shaaban
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed M. Farag
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Salem ME, Qenawy MS, Farag AM, Elwahy AHM. Synthesis of novel scaffolds based on bis-thiazole or bis-triazolothiadiazine linked to quinoxaline as new hybrid molecules. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2153338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohmmad S. Qenawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed M. Farag
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
8
|
Vinoth N, Lalitha A. Synthesis of new
1
H
‐spiro[acridine‐9,3′‐indoline]‐1,2′(
2
H
,
10
H
)‐dione derivatives using aqueous ethanol as a reaction medium. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Abdou MM, Abu-Rayyan A, Bedir AG, Abdel-Fattah S, Omar AMA, Ahmed AA, El-Desoky ESI, Ghaith EA. 3-(Bromoacetyl)coumarins: unraveling their synthesis, chemistry, and applications. RSC Adv 2021; 11:38391-38433. [PMID: 35493203 PMCID: PMC9044231 DOI: 10.1039/d1ra05574g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported. Additionally, this review covers a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties, covering the literature till May 2021.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Ahmed Abu-Rayyan
- Faculty of Science, Applied Science Private University P. O. BOX 166 Amman 11931 Jordan
| | - Ahmed G Bedir
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - S Abdel-Fattah
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - A M A Omar
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Abdullah A Ahmed
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - El-Sayed I El-Desoky
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Eslam A Ghaith
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
10
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
11
|
Diab HM, Salem ME, Abdelhamid IA, Elwahy AHM. Synthesis of novel star-shaped molecules based on a 1,3,5-triazine core linked to different heterocyclic systems as novel hybrid molecules. RSC Adv 2020; 10:44066-44078. [PMID: 35517173 PMCID: PMC9058422 DOI: 10.1039/d0ra09025e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of novel star-shaped compounds based on an s-triazine core and linked to hexahydroacridinediones, pyrimido[4,5-b]quinolones, 1H-isoquinolino[2,1-a]quinolines, tetrahydro-4H-chromenes, dihydropyrano[2,3-c]pyrazoles, thiazole, or benzothiazole as new hybrid molecules through Michael and Hantzsch reactions is reported. For this purpose, 2,4,6-tris(4-formylphenoxy)benzaldehyde was used as a versatile precursor. The synthesis of novel star-shaped compounds based on an s-triazine core and linked to different heterocycles as new hybrid molecules through Michael and Hantzsch reactions is reported.![]()
Collapse
Affiliation(s)
- Hadeer M. Diab
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | - Mostafa E. Salem
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | | | - Ahmed H. M. Elwahy
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| |
Collapse
|
12
|
Salem ME, Darweesh AF, Elwahy AHM. Synthesis of novel scaffolds based on thiazole or triazolothiadiazine linked to benzofuran or benzo[d]thiazole moieties as new hybrid molecules. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1694689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
13
|
Salem ME, Hosny M, Darweesh AF, Elwahy AHM. Synthesis of novel bis- and poly(aryldiazenylthiazoles). SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1620283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosny
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|