1
|
Shaaban AE, Ali AR, Ayyad SN, Badria FA. Multi-target directed ligands inspired natural products as an effective approach for the treatment of complex chronic health disorders. Bioorg Chem 2025; 154:108075. [PMID: 39708551 DOI: 10.1016/j.bioorg.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Complex diseases involve multifaceted etiological components, which limit the effectiveness of conventional targeted therapies. Therefore, standard medicinal treatments often face significant challenges and failures when addressing these disease conditions. Furthermore, the growing interest in multidrug resistance (MDR), the occurrence of adverse drug reactions related to use traditional approaches, and the limited clinical efficacy of single-target drug therapy have increased the demand for innovative drug treatments. In this rapidly evolving era, the exploration of multi-target directed ligands (MTDLs) derived from natural products has granted us access to a wide range of compounds with medicinal properties. The allure of these MTDLs lies in their unique ability to minimize side effects from using two medicinal agents, establishing them as the preferred choice for drug developers. MTDLs have been recognized for their extraordinary capacity to collectively hinder multiple pathways implicated in the development of intricate diseases by merging or linking active molecules obtained from these sources. This review delves into promising MTDLs derived from natural products, which modulates diverse biological pathways implicated in complex diseased conditions particularly Alzheimer's disease, diabetes, cardiac disorders and inflammatory conditions.
Collapse
Affiliation(s)
- Amira E Shaaban
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Seif N Ayyad
- Department of Organic Chemistry, Faculty of Science, Damietta University, New Damietta 34511, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
3
|
Jia Y, Yang D, Wang W, Hu K, Yan M, Zhang L, Gao L, Lu Y. Recent advances in pharmaceutical cocrystals of theophylline. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:53. [PMID: 39276287 PMCID: PMC11401818 DOI: 10.1007/s13659-024-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024]
Abstract
Currently, cocrystallization is a promising strategy for tailoring the physicochemical properties of active pharmaceutical ingredients. Theophylline, an alkaloid and the most primary metabolite of caffeine, is a readily available compound found in tea and coffee. It functions primarily as a bronchodilator and respiratory stimulant, making it a mainstay treatment for lung diseases like asthma. Theophylline's additional potential benefits, including anti-inflammatory and anticancer properties, and its possible role in neurological disorders, have garnered significant research interest. Cocrystal formation presents a viable approach to improve the physicochemical properties of theophylline and potentially mitigate its toxic effects. This review comprehensively explores several successful studies that utilized cocrystallization to favorably alter the physicochemical properties of theophylline or its CCF. Notably, cocrystals can not only enhance the solubility and bioavailability of theophylline but also exhibit synergistic effects with other APIs. The review further delves into the hydrogen bonding sites within the theophylline structure and the hydrogen bonding networks observed in cocrystal structures.
Collapse
Affiliation(s)
- Yanxiao Jia
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wenwen Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Kun Hu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Min Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
4
|
Mariconda A, Iacopetta D, Sirignano M, Ceramella J, D'Amato A, Marra M, Pellegrino M, Sinicropi MS, Aquaro S, Longo P. Silver and Gold Complexes with NHC-Ligands Derived from Caffeine: Catalytic and Pharmacological Activity. Int J Mol Sci 2024; 25:2599. [PMID: 38473851 DOI: 10.3390/ijms25052599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.
Collapse
Affiliation(s)
- Annaluisa Mariconda
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Khudhur HKA, Hussein AJ. Catalytic One-pot Solvent Free Synthesis, Biological Activity, and Docking Study of New Series of 1, 3-thiazolidine-4-one Derivatives Derived from 2- (P-tolyl) Benzoxazol-5-amine. Curr Org Synth 2024; 21:210-223. [PMID: 37990856 DOI: 10.2174/1570179420666230428125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE In this study, a simple triethylammonium salt of phosphoric acid (triethylammonium dihydrogen phosphate) (4) in the liquid state was utilized as an inexpensive, efficient one-pot three components, solvent-free synthesis of thiazolidine-4-one derivatives, with good to excellent yields. Techniques such as FT-IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS. were used for the structural elucidation. The high biotic efficiency of the newly obtained compounds was confirmed by in vitro antimicrobial action against Gram-positive (S. Aureus), Gram-negative bacteria (P. Aeruginosa and E. Coli) and antifungal activity (C. Albicans) via microplate titer dilution technique. Finally, a molecular docking study was performed with a resolved crystal structure of S. Aureus D-alanine alanyl carrier protein ligase (PDB ID: 7VHV). This investigation aimed to synthesize a new series of thiazolidine-4-one derivatives combined with benzoxazole moiety. MATERIAL AND METHODS Ionic liquid assistance one-pot solvent-free synthesis method used to synthesize a new series of thiazolidine-4-one derivative 10(a-e). RESULTS Structural identification of new synthesis and biological evaluation via techniques of (IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS). CONCLUSION Ionic liquid is utilized as an inexpensive, efficient one-pot three-component solvent-free synthesis of thiazolidine-4-one derivatives with good to excellent yields. Most of the synthesized compounds showed high biological and anti-fungal activity, in line with the docking study against mentioned microorganism and crystal structure of PDB (ID: 7VHV), respectively.
Collapse
Affiliation(s)
| | - Awaz Jamil Hussein
- Department of Chemistry, College of Education, Salahaddin University, Erbil, Kurdistan, Iraq
| |
Collapse
|
6
|
Elgazar AA, El-Domany RA, Eldehna WM, Badria FA. Theophylline-based hybrids as acetylcholinesterase inhibitors endowed with anti-inflammatory activity: synthesis, bioevaluation, in silico and preliminary kinetic studies. RSC Adv 2023; 13:25616-25634. [PMID: 37649576 PMCID: PMC10463010 DOI: 10.1039/d3ra04867e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
In this study, we investigated the conjugation of theophylline with different compounds of natural origin hoping to construct new hybrids with dual activity against cholinergic and inflammatory pathways as potential agents for the treatment of Alzheimer's disease (AD). Out of 28 tested hybrids, two hybrids, acefylline-eugenol 6d and acefylline-isatin 19, were able to inhibit acetylcholinesterase (AChE) at low micromolar concentration displaying IC50 values of 1.8 and 3.3 μM, respectively, when compared to the galantamine standard AChE inhibitor. Moreover, the prepared hybrids exhibited a significant anti-inflammatory effect against lipopolysaccharide induced inflammation in RAW 264.7 and reduced nitric oxide (NO), tumor necrosis alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in a dose dependent manner. These hybrids demonstrated significant reductions in nitric oxide (NO), tumor necrosis alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in RAW 264.7 cells induced by lipopolysaccharide (LPS). The findings of this study were further explained in light of network pharmacology analysis which suggested that AChE and nitric oxide synthase were the main targets of the most active compounds. Molecular docking studies revealed their ability to bind to the heme binding site of nitric oxide synthase 3 (NOS-3) and effectively occupy the active site of AChE, interacting with both the peripheral aromatic subsite and catalytic triad. Finally, the compounds demonstrated stability in simulated gastric and intestinal environments, suggesting potential absorption into the bloodstream without significant hydrolysis. These findings highlight the possible therapeutic potential of acefylline-eugenol 6d and acefylline-isatin 19 hybrids in targeting multiple pathological mechanisms involved in AD, offering promising avenues for further development as potential treatments for this devastating disease.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura Egypt +20-1001762927
| |
Collapse
|
7
|
Marín-Carrillo E, Valdés H, Hernández-Ortega S, Morales-Morales D. Novel Hybrid Phosphinite-Theophylline Ligands and their Pd(II) Complexes. Synthesis, Characterization and Catalytic Evaluation in Suzuki-Miyaura Couplings. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Faghih Z, Emami L, Zomoridian K, Sabet R, Bargebid R, Mansourian A, Zeinali B, Rostami Z, Khabnadideh S. Aryloxy Alkyl Theophylline Derivatives as Antifungal Agents: Design, Synthesis, Biological Evaluation and Computational Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202201618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zeinab Faghih
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences, P.O. Box 71345-1798 Shiraz Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences, P.O. Box 71345-1798 Shiraz Iran
| | - Kamiar Zomoridian
- Center of Basic Researches in Infectious Diseases Department of Medical Mycology and Parasitology School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Rahele Bargebid
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences, P.O. Box 71345-1798 Shiraz Iran
| | - Ali Mansourian
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Behnam Zeinali
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences, P.O. Box 71345-1798 Shiraz Iran
| | - Zohre Rostami
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences, P.O. Box 71345-1798 Shiraz Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences, P.O. Box 71345-1798 Shiraz Iran
| |
Collapse
|
9
|
Shahzadi I, Zahoor AF, Rasul A, Mansha A, Ahmad S, Raza Z. Synthesis, Hemolytic Studies, and In Silico Modeling of Novel Acefylline-1,2,4-Triazole Hybrids as Potential Anti-cancer Agents against MCF-7 and A549. ACS OMEGA 2021; 6:11943-11953. [PMID: 34056349 PMCID: PMC8154016 DOI: 10.1021/acsomega.1c00424] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
A series of novel theophylline-7-acetic acid (acefylline)-derived 1,2,4-triazole hybrids with N-phenyl acetamide moieties (11a-j) have been synthesized and tested for their inhibitory (in vitro) potential against two cancer cell lines, A549 (lung) and MCF-7 (breast), using MTT assay. Among these derivatives, 11a, 11c, 11d, 11g, and 11h displayed remarkable activity against both cancer cell lines having cell viability values in the 21.74 ± 1.60-55.37 ± 4.60% range compared to acefylline (86.32 ± 1.75%) using 100 μg/μL concentration of compounds. These compounds were further screened against the A549 cancer cell line (lung) to find their half-maximal inhibitory concentration (IC50) by applying various concentrations of these compounds. Compound 11g (2-(5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-4-phenyl-4H-1,2,4-triazol-3-ylthio)-N-p-tolylacetamide) with the least IC50 value (1.25 ± 1.36 μM) was discerned as a strong inhibitor of cancer cell multiplication in both cell lines (A549 and MCF-7). Their hemolytic studies revealed that all of them had very low cytotoxicity. Finally, in silico modeling was carried out to find the mode of binding of the highly active compound (11g), which was according to the results of anti-cancer activity.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department
of Zoology, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Asim Mansha
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department
of Chemistry, University of Engineering
and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Zohaib Raza
- Department
of Pharmacology, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
Facile, capable, atom-economical one-pot multicomponent strategy for the direct regioselective synthesis of novel isoxazolo[5,4-d]pyrimidines. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03757-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|