Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds.
Arch Pharm (Weinheim) 2020;
354:e2000232. [PMID:
33210348 DOI:
10.1002/ardp.202000232]
[Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022]
Abstract
Although most of the heterocycles have been reported to possess a significant pharmacological activity, only a few of them, namely quinoline derivatives, have exhibited the finest biological activities. Despite the few medicinal properties of the plain quinoline molecule, its derivatives exhibit diverse pharmacological properties such as anticancer, anti-inflammatory, antibacterial, antiviral, antifungal, antiprotozoal activities, and so on. The potential antimicrobial properties of the quinoline derivatives are evident from the decades of research on these derivatives. Owing to limitations like drug resistance, high cost, severe side effects, and less bioavailability of previously synthesized antimicrobial agents, these drugs have become obsolete in recent years. Hence, the design of more efficient antimicrobial drugs must be given topmost priority. A breakthrough in drug discovery is a must to prevent malevolent microbial diseases. Addressing all these issues, researchers have been continuously contributing to antimicrobial drug discovery. Herein, a short description of the pharmacology of antimicrobial agents such as antibacterials and antifungals synthesized recently is provided. The versatile derivatization of the quinoline moiety leading to significant antimicrobial potencies is discussed, considering the structure-activity relationship.
Collapse