1
|
Khanna A, Kumar N, Rana R, Jyoti, Sharma A, Muskan, Kaur H, Bedi PMS. Fluoroquinolones tackling antimicrobial resistance: Rational design, mechanistic insights and comparative analysis of norfloxacin vs ciprofloxacin derivatives. Bioorg Chem 2024; 153:107773. [PMID: 39241583 DOI: 10.1016/j.bioorg.2024.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Antimicrobial resistance poses a global health concern and develops a need to discover novel antimicrobial agents or targets to tackle this problem. Fluoroquinolone (FN), a DNA gyrase and topoisomerase IV inhibitor, has helped to conquer antimicrobial resistance as it provides flexibility to researchers to rationally modify its structure to increase potency and efficacy. This review provides insights into the rational modification of FNs, the causes of resistance to FNs, and the mechanism of action of FNs. Herein, we have explored the latest advancements in antimicrobial activities of FN analogues and the effect of various substitutions with a focus on utilizing the FN nucleus to search for novel potential antimicrobial candidates. Moreover, this review also provides a comparative analysis of two widely prescribed FNs that are ciprofloxacin and norfloxacin, explaining their rationale for their design, structure-activity relationships (SAR), causes of resistance, and mechanistic studies. These insights will prove advantageous for new researchers by aiding them in designing novel and effective FN-based compounds to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Nitish Kumar
- Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab 145001, India.
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | | | |
Collapse
|
2
|
Santos AL, Beckham JL, Liu D, Li G, van Venrooy A, Oliver A, Tegos GP, Tour JM. Visible-Light-Activated Molecular Machines Kill Fungi by Necrosis Following Mitochondrial Dysfunction and Calcium Overload. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205781. [PMID: 36715588 PMCID: PMC10074111 DOI: 10.1002/advs.202205781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Invasive fungal infections are a growing public health threat. As fungi become increasingly resistant to existing drugs, new antifungals are urgently needed. Here, it is reported that 405-nm-visible-light-activated synthetic molecular machines (MMs) eliminate planktonic and biofilm fungal populations more effectively than conventional antifungals without resistance development. Mechanism-of-action studies show that MMs bind to fungal mitochondrial phospholipids. Upon visible light activation, rapid unidirectional drilling of MMs at ≈3 million cycles per second (MHz) results in mitochondrial dysfunction, calcium overload, and ultimately necrosis. Besides their direct antifungal effect, MMs synergize with conventional antifungals by impairing the activity of energy-dependent efflux pumps. Finally, MMs potentiate standard antifungals both in vivo and in an ex vivo porcine model of onychomycosis, reducing the fungal burden associated with infection.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of ChemistryRice UniversityHoustonTX77005USA
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
| | | | - Dongdong Liu
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Gang Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Antonio Oliver
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
- Servicio de MicrobiologiaHospital Universitari Son EspasesPalma07120Spain
| | - George P. Tegos
- Office of ResearchReading HospitalTower Health, 420 S. Fifth AvenueWest ReadingPA19611USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
| |
Collapse
|
3
|
Gao J, Hou H, Gao F. Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2023; 247:115026. [PMID: 36577217 DOI: 10.1016/j.ejmech.2022.115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The ESKAPE (Escherichia coli/E. coli, Staphylococcus aureus/S. aureus, Klebsiella pneumonia/K. pneumoniae, Acinetobacter Baumannii/A. baumannii, Pseudomonas aeroginosa/P. aeroginosa and Enterobacter spp.) pathogens, which could escape or evade common therapies through diverse antimicrobial resistance mechanisms and biofilm formation, are deemed as highly virulent bacteria responsible for life-threatening diseases, calling for novel chemotherapeutics. Quinolones including 2-quinolones and 4-quinolones have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Quinolones especially fluoroquinolones could inhibit the synthesis of nucleic acid of ESKAPE pathogens, leading to the rupture of bacterial chromosome. However, the resistance of ESKAPE pathogens to quinolones develops rapidly and spreads widely. Accordingly, it has become increasingly urgent to enhance the potency of quinolones against both drug-susceptible and drug-resistant ESKAPE pathogens. Quinolone hybrids can bind with different drug targets simultaneously and have been considered as useful prototypes to circumvent drug resistance. The purpose of this review is to summarize the current scenario (2018-present) of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens, together with the structure-activity relationships and mechanisms of action to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Yilmaz O, Capanlar S, Akkoc S, Alici H, Ozcan I, Tahtaci H. Design, Synthesis, Characterization, Antiproliferative Activity, and In Silico Studies of Novel Alkyl Ether Derivatives Containing 1
H
‐1,2,4‐Triazole Ring. ChemistrySelect 2022. [DOI: 10.1002/slct.202203604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Osman Yilmaz
- Karabuk University Faculty of Science Department of Chemistry 78050 Karabuk Türkiye
| | - Seval Capanlar
- Zonguldak Bulent Ecevit University Faculty of Science Department of Chemistry 67100 Zonguldak, Türkiye
| | - Senem Akkoc
- Suleyman Demirel University Faculty of Pharmacy Department of Basic Pharmaceutical Sciences Isparta 32260 Türkiye
- Bahcesehir University Faculty of Engineering and Natural Sciences 34353 Istanbul Türkiye
| | - Hakan Alici
- Zonguldak Bulent Ecevit University Faculty of Science Department of Physics 67100 Zonguldak Türkiye
| | - Ibrahim Ozcan
- Karabuk University Faculty of Science Department of Chemistry 78050 Karabuk Türkiye
| | - Hakan Tahtaci
- Karabuk University Faculty of Science Department of Chemistry 78050 Karabuk Türkiye
| |
Collapse
|
5
|
Gomha SM, Riyadh SM, Farghaly TA, Haggam RA. Synthetic Utility of Bis-Aminomercapto[1,2,4] Triazoles in the Preparation of Bis- Fused Triazoles and Macrocycles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reda A. Haggam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Cebeci YU, Ceylan Ş, Karaoğlu ŞA. Conventional and microwave irradiated synthesis, biological activity evaluation of highly substituted indole-triazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Design and microwave-assisted synthesis of a novel Mannich base and conazole derivatives and their biological assessment. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
4-Amino-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (1) was converted to the corresponding Schiff base (2) by treatment with salicylaldehyde. 1,2,4-Triazoles were then converted to the corresponding Mannich bases containing fluroquinolone core using a one-pot three-component procedure. Moreover, the synthesis of six compounds, which can be considered as conazole analogues, was performed starting from 1,2,4-triazole-3-one compounds via three steps by either conventional or microwave-mediated conditions. All the newly synthesized compounds were screened for their antimicrobial activities. Most exhibited good to moderate antibacterial and/or antifungal activity. The structural assignments of the new compounds were based on elemental analysis and spectral (IR, 1H NMR, 13C NMR, and LC-MS) data.
Collapse
|
8
|
Cebeci YU, Ceylan S, Demirbas N, Karaoğlu ŞA. Microwave-assisted Synthesis of Novel Mannich Base and Conazole Derivatives Containing Biologically Active Pharmacological Groups. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201016154034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The aim of this study was to synthesize new mannich bases and conazol
derivatives with biological activity by the microwave-assisted method.
Introduction:
1,2,4-Triazole-3-one (3) acquired from tryptamine was transformed to the corresponding
carbox(thio)amides (6a-c) via several steps. Compounds 6a-c were refluxed with sodium hydroxide
to yield 1,2,4-triazole derivatives (7a-c). Compounds 3 and 7a-c on treatment with different
heterocyclic secondary amines in an ambiance with formaldehyde afforded the mannich bases 8-15
having diverse pharmacophore units with biologically active sites. The reaction of compound 3 and
2-bromo-1-(4-chlorophenyl) ethanone in the presence of sodium ethoxide gave the corresponding
product 2-substituted-1,2,4-triazole-3-one, 16, which was reduced to 1,2,4-triazoles (17). Synthesis
of compounds 18, 19, and 20 was carried out starting from compounds 17 with 4-chlorobenzyl
chloride (for 18), 2,4-dichlorobenzyl chloride (for 19), and 2,6-dichlorobenzyl chloride (for 20).
Methods:
he conventional technique was utilized for the synthesis of compounds, 3-7, and microwave-
assisted technique for the compounds, 8-20. That is, green chemistry techniques were applied
during these reactions. The structures of molecules were elucidated on the foundation of 1H NMR,
13C NMR, FT-IR, EI-MS methods, and elemental analysis. Novel synthesized molecules were investigated
for their antimicrobial activity using MIC (minimum inhibitory concentration) method.
Results:
Aminoalkylation of triazole derivatives 3 and 7a-c with fluoroquinolones such as ciprofloxacin
and norfloxacin provided an enhancement to the bioactivity of mannich bases 8-11 against
the tested microorganisms. The MIC values ranged between <0.24 and 3.9 μg/mL. Moreover, molecules
10 and 11 exhibited more effects on M. smegmatis than the other compounds by the MIC
values of <1 μg/mL. They have shown very good antituberculosis activity.
Conclusion:
Most of the synthesized structures were observed to have excellent antimicrobial activity
against most microorganisms taken into account. These molecules have better activity than the
standard drug ampicillin and streptomycin.
Collapse
Affiliation(s)
- Yıldız Uygun Cebeci
- Department of Chemistry, Karadeniz Technical University, 61080, Trabzon,Turkey
| | - Sule Ceylan
- Artvin Çoruh University, Department of Occupational Health and Safety, 08000, Artvin,Turkey
| | - Neslihan Demirbas
- Department of Chemistry, Karadeniz Technical University, 61080, Trabzon,Turkey
| | | |
Collapse
|
9
|
Synthesis and antitumor effects of a new class of 1,2,4-triazole derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Riyadh SM, Gomha SM. Two decades of the synthesis of mono- and bis-aminomercapto[1,2,4]triazoles. RSC Adv 2020; 10:24994-25012. [PMID: 35517465 PMCID: PMC9055246 DOI: 10.1039/d0ra04208k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Abstract
4-Amino-5-mercapto[1,2,4]triazole and its 3-substituted derivatives have proven to be of biological interest and provide access to a new class of biologically active heterocyclic compounds for biomedical applications. This study will be helpful for scientific researchers interested in the chemistry of bifunctional versatile compounds as it provides a collection of all the methods for the preparation of 3-substituted-4-amino-5-mercapto[1,2,4]triazoles with aliphatic, aromatic, and heterocyclic moieties during the period from 2000 to mid-2020.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 30002 Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt
- Department of Chemistry, Faculty of Science, Islamic University in Al-Madinah Al-Munawarah 42351 Saudi Arabia
| |
Collapse
|