1
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
2
|
Garwood JJA, Chen AD, Nagib DA. Radical Polarity. J Am Chem Soc 2024. [PMID: 39363280 DOI: 10.1021/jacs.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The polarity of a radical intermediate profoundly impacts its reactivity and selectivity. To quantify this influence and predict its effects, the electrophilicity/nucleophilicity of >500 radicals has been calculated. This database of open-shell species entails frequently encountered synthetic intermediates, including radicals centered at sp3, sp2, and sp hybridized carbon atoms or various heteroatoms (O, N, S, P, B, Si, X). Importantly, these computationally determined polarities have been experimentally validated for electronically diverse sets of >50 C-centered radicals, as well as N- and O- centered radicals. High correlations are measured between calculated polarity and quantified reactivity, as well as within parallel sets of competition experiments (across different radical types and reaction classes). These multipronged analyses show a strong relationship between the computed electrophilicity, ω, of a radical and its relative reactivity (krel vs Δω slopes up to 40; showing mere Δω of 0.1 eV affords up to 4-fold rate enhancement). We expect this experimentally validated database will enable reactivity and selectivity prediction (by harnessing polarity-matched rate enhancement) and assist with troubleshooting in synthetic reaction development.
Collapse
Affiliation(s)
- Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Ma D, Duran P, Al-Ahmad R, Hestehave S, Joa M, Alsbiei O, Rodríguez-Palma EJ, Li Y, Wang S, Khanna R, Dai M. C-H Functionalization-Enabled 11-Step Semisynthesis of (-)-Veragranine A and Characterization of Synthetic Analogs in Osteoarthritis-related Pain Treatment. J Am Chem Soc 2024; 146:16698-16705. [PMID: 38843262 PMCID: PMC11191690 DOI: 10.1021/jacs.4c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
We report an efficient semisynthesis of the cholestane steroidal alkaloid (-)-veragranine A with a 6/6/6/5/6/6 hexacyclic ring system, eight stereocenters, and a unique C12-C23 linkage. Our synthesis features a Schönecker-Baran C-H oxidation at C12, a Suzuki-Miyaura cross-coupling to form the C12-C23 bond, and a hydrogen atom transfer (HAT)-initiated Minisci C-H cyclization to forge the C20-C22 bond with desired stereochemistry at C20. These enabling transformations significantly enhanced the overall synthetic efficiency and delivered (-)-veragranine A in 11 steps and over 200 mg from cheap and readily available dehydroepiandrosterone. In addition, this approach allowed flexible syntheses of novel synthetic analogs for biological evaluations in sensory neurons in vitro and in an in vivo model of arthritic pain, from which two novel lead compounds were identified for further development.
Collapse
Affiliation(s)
- Donghui Ma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Paz Duran
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Reem Al-Ahmad
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sara Hestehave
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Margarita Joa
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Omar Alsbiei
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Erick J. Rodríguez-Palma
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Yanrong Li
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Shilin Wang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Mantry L, Gandeepan P. Visible-Light-Induced PhI(OAc) 2-Mediated Alkylation of Heteroarenes with Simple Alkanes and Ethers. J Org Chem 2024; 89:6539-6544. [PMID: 38642055 DOI: 10.1021/acs.joc.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The direct alkylation of heteroarenes with alkanes has been successfully achieved through visible-light-induced hypervalent iodine-mediated C-H functionalization of both coupling partners at ambient temperatures. This reaction proceeds via the in situ generation of nucleophilic alkyl radicals from alkanes through hydrogen atom transfer (HAT), followed by a Minisci-type reaction with heteroarenes. These mild reaction conditions have demonstrated their suitability for the alkylation of a wide range of heterocycles, including azoles, pyridines, quinolines, isoquinolines, and quinoxalinones.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619
| |
Collapse
|
5
|
Cao X, Wei L, Yang J, Song H, Wei Y. A visible-light-induced bromine radical initiates direct C-H alkylation of heteroaromatics. Org Biomol Chem 2024; 22:1157-1161. [PMID: 38224149 DOI: 10.1039/d3ob02047a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Herein, a photoinduced direct C(sp2)-H alkylation of N-heteroaromatics by using commercially available tetrabutylammonium tribromide (TBATB) as a HAT reagent is described. The method uses O2 as the oxidant, and features metal-free, mild reaction conditions and good functional group compatibility.
Collapse
Affiliation(s)
- Xiangxue Cao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
| | - Lanfeng Wei
- Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi 830023, China.
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
| | - Huanhuan Song
- Bingtuan Energy Development Institute, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
| |
Collapse
|
6
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
7
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Late-stage Functionalization for Improving Drug-like Molecular Properties. Chem Rev 2023. [PMID: 37285604 DOI: 10.1021/acs.chemrev.2c00797] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of late-stage functionalization (LSF) methodologies, particularly C-H functionalization, has revolutionized the field of organic synthesis. Over the past decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, allowing for the drug discovery process to become more efficient. Most reported applications of late-stage C-H functionalization of drugs and drug-like molecules have been to rapidly diversify screening libraries to explore structure-activity relationships. However, there has been a growing trend toward the use of LSF methodologies as an efficient tool for improving drug-like molecular properties of promising drug candidates. In this review, we have comprehensively reviewed recent progress in this emerging area. Particular emphasis is placed on case studies where multiple LSF techniques were implemented to generate a library of novel analogues with improved drug-like properties. We have critically analyzed the current scope of LSF strategies to improve drug-like properties and commented on how we believe LSF can transform drug discovery in the future. Overall, we aim to provide a comprehensive survey of LSF techniques as tools for efficiently improving drug-like molecular properties, anticipating its continued uptake in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Palit K, Sepay N, Panda N. Arylative Methylation of 2,3-Dihydropyrazines and Pyrazinones Using Dimethyl Sulfoxide as a C1 Source. J Org Chem 2023. [PMID: 36786556 DOI: 10.1021/acs.joc.2c02675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Divergent synthesis of α-C-H methylated pyrazines and pyrazinones using dimethyl sulfoxide as a nonconventional methylating agent under metal-free conditions was reported. Dimethyl sulfoxide-coordinated bromine cation pools generated from the treatment of dimethyl sulfoxide and 1,2-dibromoethane undergo Pummerer-type fragmentation to afford an electrophilic methyl(methylene)sulfonium ion for reaction with a carbon nucleophile followed by aromatization to afford α-methylated pyrazines and pyrazinones.
Collapse
Affiliation(s)
- Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
10
|
Lin Q, Gong H, Wu F. Ni-Catalyzed Reductive Coupling of Heteroaryl Bromides with Tertiary Alkyl Halides. Org Lett 2022; 24:8996-9000. [DOI: 10.1021/acs.orglett.2c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Fan Wu
- Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
11
|
Laha R, Patel TI, Moschitto MJ. Desulfinative Alkylation of Heteroarenes via an Electrostatic Electron Donor-Acceptor Complex. Org Lett 2022; 24:7394-7399. [PMID: 36194682 DOI: 10.1021/acs.orglett.2c02932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functionalized pyridine and quinoline rings are important components of numerous bioactive molecules and natural products; however, diversification of these rings often requires de novo heterocycle ring synthesis or demanding reaction conditions. We report a method for desulfinative alkylation of pyridine and quinoline N-methoxide salts that operates under both photocatalytic and electrostatic electron donor-acceptor-mediated pathways. Unlike most EDA-mediated processes, this reaction operates in the absence of light and with the desulfination of the donor compound.
Collapse
Affiliation(s)
- Ramkrishna Laha
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| | - Twinkle I Patel
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| | - Matthew J Moschitto
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| |
Collapse
|
12
|
Li JF, Pan D, Wang HR, Zhang T, Li Y, Huang G, Ye M. Enantioselective C2-H Alkylation of Pyridines with 1,3-Dienes via Ni-Al Bimetallic Catalysis. J Am Chem Soc 2022; 144:18810-18816. [PMID: 36205623 DOI: 10.1021/jacs.2c09306] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chiral phosphine oxide-ligated Ni-Al bimetallic catalyst was used to realize an enantioselective C2-H alkylation of pyridines without the need of a C2-block. A wide range of pyridines, including unsubstituted pyridine, C3, C4, and C2-substituted pyridines, and even complex pyridine-containing bioactive molecules are well compatible with the reaction, providing up to 81% yield and up to 97% ee.
Collapse
Affiliation(s)
- Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Hao-Rui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Yi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Ogbu IM, Kurtay G, Robert F, Landais Y. Oxamic acids: useful precursors of carbamoyl radicals. Chem Commun (Camb) 2022; 58:7593-7607. [PMID: 35735051 DOI: 10.1039/d2cc01953a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review article describes the recent development in the chemistry of carbamoyl radicals generated from oxamic acids. This mild and efficient method compares well with previous methods of generation of these nucleophilic radicals. The oxidative decarboxylation of oxamic acids can be mediated through thermal, photochemical, electrochemical or photoelectrochemical means, generating carbamoyl radicals, which may further add to unsaturated systems to provide a broad range of important amides. Oxidative decarboxylation of oxamic acids also offers a straightforward entry for the preparation of urethanes, ureas, and thioureas.
Collapse
Affiliation(s)
- Ikechukwu Martin Ogbu
- University of Bordeaux, Institute of Molecular Sciences (ISM), UMR-CNRS 5255, 351, Cours de la Libération, 33405 Talence, Cedex, France. .,Alex Ekwueme Federal University, Department of Chemistry, Faculty of Sciences, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Gülbin Kurtay
- University of Bordeaux, Institute of Molecular Sciences (ISM), UMR-CNRS 5255, 351, Cours de la Libération, 33405 Talence, Cedex, France. .,University of Ankara, Department of Chemistry, Faculty of Science, Ankara, Turkey
| | - Frédéric Robert
- University of Bordeaux, Institute of Molecular Sciences (ISM), UMR-CNRS 5255, 351, Cours de la Libération, 33405 Talence, Cedex, France.
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences (ISM), UMR-CNRS 5255, 351, Cours de la Libération, 33405 Talence, Cedex, France.
| |
Collapse
|
14
|
Colgan AC, Proctor RSJ, Gibson DC, Chuentragool P, Lahdenperä ASK, Ermanis K, Phipps RJ. Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols. Angew Chem Int Ed Engl 2022; 61:e202200266. [PMID: 35420220 PMCID: PMC9321721 DOI: 10.1002/anie.202200266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 12/25/2022]
Abstract
Catalytic enantioselective Minisci reactions have recently been developed but all instances so far utilize α-amino radical coupling partners. We report a substantial evolution of the enantioselective Minisci reaction that enables α-hydroxy radicals to be used, providing valuable enantioenriched secondary alcohol products. This is achieved through the direct oxidative coupling of two C-H bonds on simple alcohol and pyridine partners through a hydrogen atom transfer (HAT)-driven approach: a challenging process to achieve due to the numerous side reactions that can occur. Our approach is highly regioselective as well as highly enantioselective. Dicumyl peroxide, upon irradiation with 390 nm light, serves as both HAT reagent and oxidant whilst selectivity is controlled by use of a chiral phosphoric acid catalyst. Computational and experimental evidence provide mechanistic insight as to the origin of selectivity, revealing a stereodetermining deprotonation step distinct from the analogous reaction of amide-containing substrates.
Collapse
Affiliation(s)
- Avene C. Colgan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Rupert S. J. Proctor
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - David C. Gibson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Padon Chuentragool
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Antti S. K. Lahdenperä
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Kristaps Ermanis
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- School of ChemistryUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Robert J. Phipps
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
15
|
Sharique M, Majhi J, Dhungana RK, Kammer LM, Krumb M, Lipp A, Romero E, Molander GA. A practical and sustainable two-component Minisci alkylation via photo-induced EDA-complex activation. Chem Sci 2022; 13:5701-5706. [PMID: 35694363 PMCID: PMC9116295 DOI: 10.1039/d2sc01363k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
An operationally simple, open-air, and efficient light-mediated Minisci C-H alkylation method is described, based on the formation of an electron donor-acceptor (EDA) complex between nitrogen-containing heterocycles and redox-active esters. In contrast to previously reported protocols, this method does not require a photocatalyst, an external single electron transfer agent, or an oxidant additive. Achieved under mildly acidic and open-air conditions, the reaction incorporates primary-, secondary-, and tertiary radicals, including bicyclo[1.1.1]pentyl (BCP) radicals, along with various heterocycles to generate Minisci alkylation products in moderate to good yields. Additionally, the method is exploited to generate a stereo-enriched, hetereoaryl-substituted carbohydrate.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Eugénie Romero
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
16
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
17
|
Bi H, Zhou Y, Jiang W, Liu J. Electrophotocatalytic C−H Hydroxyalkylation of Heteroaromatics with Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huihua Bi
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
| | - Yu Zhou
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
| | - Jie Liu
- College of Chemistry and Chemical Engineering Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
18
|
Synthesis of Functionalized Six-Membered-Ring Azahelicenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082522. [PMID: 35458720 PMCID: PMC9028320 DOI: 10.3390/molecules27082522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Functionalization, namely the introduction of side groups onto the molecular scaffold of a helicene, may have either the purpose of modifying the electronic properties of the parent helicene, e.g., by adding electron-withdrawing or electron-donating groups, or the scope of providing the helicene with a “handle”, which can be reacted to bind the molecule to another molecule or to a solid structure, such as a carbon or metal surface, or again to allow for complexation of the helicene with metal ions. The possible approaches are two-fold: the synthesis of the helicene can be performed using starting materials that already contain a side group, or the side group can be introduced after the synthesis of the parent helicene. As azahelicenes are helicenes bearing one or more nitrogen atom(s) in the molecular framework, parent azahelicenes can be functionalized on carbon atoms by exploiting the presence of the electron-withdrawing nitrogen atom. Moreover, they can be transformed into quaternary salts, whose properties are quite different from those of the parent azahelicenes in terms of the solubility and electronic properties. This review aims to provide a survey of the different synthetic methods available to attain this fascinating class of compounds.
Collapse
|
19
|
Colgan AC, Proctor RSJ, Gibson DC, Chuentragool P, Lahdenpera A, Ermanis K, Phipps RJ. Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Avene C. Colgan
- University of Cambridge Central Science Library: University of Cambridge Chemistry UNITED KINGDOM
| | | | | | | | - Antti Lahdenpera
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | | | - Robert J Phipps
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UNITED KINGDOM
| |
Collapse
|
20
|
|
21
|
Liang Y, Niu L, Liang X, Wang S, Wang P, Lei A. Electrooxidation‐Induced
C(sp
3
)‐H/ C(sp
2
)‐H
Radical‐Radical
Cross‐coupling between Xanthanes and Electron‐rich Arenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuwei Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Linbin Niu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Xing‐An Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Pengjie Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
22
|
Ji X, Yang Z, Wu X, Deng GJ, Huang H. Photoredox Neutral Decarboxylative Hydroxyalkylations of Heteroarenes with α-Keto Acids. J Org Chem 2022; 87:4168-4182. [PMID: 35212524 DOI: 10.1021/acs.joc.1c03007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoredox neutral decarboxylative hydroxyalkylations of heteroarenes with α-keto acids under mild conditions are described. Stable and readily available α-keto acids were employed as hydroxyalkylating reagents with only CO2 released as the byproduct. A range of aromatic and aliphatic α-keto acids were successfully converted into hydroxyalkylated products with various heteroarenes. This transformation proceeded through a decarboxylation/Minisci addition/SCS sequence, generating a variety of valuable hydroxyalkylated heteroarenes.
Collapse
Affiliation(s)
- Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhonglin Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xinzhuang Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Abstract
Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.
Collapse
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Efrey A. Noten
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Su YL, Liu GX, De Angelis L, He R, Al-Sayyed A, Schanze KS, Hu WH, Qiu H, Doyle MP. Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ru He
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Kirk S. Schanze
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Wen-Hao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
25
|
Li J, Siang Tan S, Kyne SH, Wai Hong Chan P. Minisci‐Type Alkylation of
N
‐Heteroarenes by
N
‐(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacheng Li
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Suan Siang Tan
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Sara Helen Kyne
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- Department of Biological Environment Jiyang College of Zhejiang A&F University Hang Zhou Shi, Zhuji 311800, People's Republic of China
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
26
|
Georgiou E, Spinnato D, Chen K, Melchiorre P, Muñiz K. Switchable photocatalysis for the chemodivergent benzylation of 4-cyanopyridines. Chem Sci 2022; 13:8060-8064. [PMID: 35919417 PMCID: PMC9278488 DOI: 10.1039/d2sc02698h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides. The judicious choice of different photocatalyst quenchers allowed us to select at will between mechanistically divergent processes. The two reaction manifolds, an ipso-substitution path proceeding via radical coupling and a Minisci-type addition, enabled selective access to regioisomeric C4 or C2 benzylated pyridines, respectively. Mechanistic investigations shed light on the origin of the chemoselectivity switch. We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides.![]()
Collapse
Affiliation(s)
- Eleni Georgiou
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili (URV), 43007, Tarragona, Spain
| | - Davide Spinnato
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili (URV), 43007, Tarragona, Spain
| | - Kang Chen
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- ICREA, Passeig Lluís Companys 23 – 08010, Barcelona, Spain
| | | |
Collapse
|
27
|
Li J, Huang CY, Han JT, Li CJ. Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chia-Yu Huang
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jing-Tan Han
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
28
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox-Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021; 60:21116-21149. [PMID: 33629454 PMCID: PMC8382814 DOI: 10.1002/anie.202016666] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Photomediated Giese reactions are at the forefront of radical chemistry, much like the classical tin-mediated Giese reactions were nearly forty years ago. With the global recognition of organometallic photocatalysts for the mild and tunable generation of carbon-centered radicals, chemists have developed a torrent of strategies to form previously inaccessible radical intermediates that are capable of engaging in intermolecular conjugate addition reactions. This Review summarizes advances in photoredox-mediated Giese reactions since 2013, with a focus on the breadth of methods that provide access to crucial carbon-centered radical intermediates that can engage in radical conjugate addition processes.
Collapse
Affiliation(s)
| | - Jennifer L Roizen
- Department of Chemistry, Duke University, Box 90346, Durham, NC, 27708-0354, USA
| |
Collapse
|
29
|
Behera BK, Sahu AK, Devi NR, Saikia AK. K 2S 2O 8-Mediated Synthesis of Highly Functionalized Pyrroles via Oxidative Self-Dimerization of N-Propargylamines. J Org Chem 2021; 86:12481-12493. [PMID: 34463507 DOI: 10.1021/acs.joc.1c00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient methodology has been developed for the synthesis of tetra- and pentasubstituted pyrroles via oxidative self-dimerization of N-propargylamines catalyzed by silver benzoate in the presence of K2S2O8 in good yields. The protocol provides a simple route for the synthesis of both tetra- and pentasubstituted pyrroles with two carbonyl groups in the side chain. The methodology can be extended toward the synthesis of pyrrolo[3,4-d]pyridazine.
Collapse
Affiliation(s)
- Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ngangbam Renubala Devi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
30
|
de Pedro Beato E, Spinnato D, Zhou W, Melchiorre P. A General Organocatalytic System for Electron Donor-Acceptor Complex Photoactivation and Its Use in Radical Processes. J Am Chem Soc 2021; 143:12304-12314. [PMID: 34320312 PMCID: PMC8361436 DOI: 10.1021/jacs.1c05607] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report herein a modular class of organic catalysts that, acting as donors, can readily form photoactive electron donor-acceptor (EDA) complexes with a variety of radical precursors. Excitation with visible light generates open-shell intermediates under mild conditions, including nonstabilized carbon radicals and nitrogen-centered radicals. The modular nature of the commercially available xanthogenate and dithiocarbamate anion organocatalysts offers a versatile EDA complex catalytic platform for developing mechanistically distinct radical reactions, encompassing redox-neutral and net-reductive processes. Mechanistic investigations, by means of quantum yield determination, established that a closed catalytic cycle is operational for all of the developed radical processes, highlighting the ability of the organic catalysts to turn over and iteratively drive every catalytic cycle. We also demonstrate how the catalysts' stability and the method's high functional group tolerance could be advantageous for the direct radical functionalization of abundant functional groups, including aliphatic carboxylic acids and amines, and for applications in the late-stage elaboration of biorelevant compounds and enantioselective radical catalysis.
Collapse
Affiliation(s)
- Eduardo de Pedro Beato
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Davide Spinnato
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Wei Zhou
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,ICREA-Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
31
|
Alfonzo E, Hande SM. α-Heteroarylation of Thioethers via Photoredox and Weak Brønsted Base Catalysis. Org Lett 2021; 23:6115-6120. [PMID: 34297584 DOI: 10.1021/acs.orglett.1c02151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the C-H activation of thioethers to α-thio alkyl radicals and their addition to N-methoxyheteroarenium salts for the redox-neutral synthesis of α-heteroaromatic thioethers. Studies are consistent with a two-step activation mechanism, where oxidation of thioethers to sulfide radical cations by a photoredox catalyst is followed by α-C-H deprotonation by a weak Brønsted base catalyst to afford α-thio alkyl radicals. Further, N-methoxyheteroarenium salts play additional roles as a source of methoxyl radical that contributes to α-thio alkyl radical generation and a sacrificial oxidant that regenerates the photoredox catalytic cycle.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Sudhir M Hande
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
32
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox‐Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jennifer L. Roizen
- Department of Chemistry Duke University Box 90346 Durham NC 27708-0354 USA
| |
Collapse
|
33
|
Dong J, Liu J, Song H, Liu Y, Wang Q. Metal-, Photocatalyst-, and Light-Free Minisci C-H Acetylation of N-Heteroarenes with Vinyl Ethers. Org Lett 2021; 23:4374-4378. [PMID: 34024106 DOI: 10.1021/acs.orglett.1c01310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a mild, operationally simple method for Minisci C-H acetylation of N-heteroarenes using vinyl ethers as robust, inexpensive acetyl sources. The reactions do not require a conventional photocatalysis, electrocatalysis, metal catalysis, light activation, or high temperature. This method is thus significantly more sustainable than previously reported methods in terms of cost, reagent toxicity, and waste generation. This protocol can be expected to obtain medically relevant molecules from abundant feedstock materials.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
34
|
Abstract
Minisci-type reactions have been widely known as reactions that involve the addition
of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss.
While the originally developed protocols for radical generation remain in active use today, in
recent years, the new array of radical generation strategies have allowed the use of a wider
variety of radical precursors that often operate under milder and more benign conditions. New
transformations based on free radical reactivity are now available to a synthetic chemist, to
utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis
and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical
precursors, have become popular approaches. Our review will cover the remarkable literature
that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an
attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications
in organic synthesis.
Collapse
Affiliation(s)
- Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
35
|
Proctor RJ, Chuentragool P, Colgan AC, Phipps RJ. Hydrogen Atom Transfer-Driven Enantioselective Minisci Reaction of Amides. J Am Chem Soc 2021; 143:4928-4934. [PMID: 33780237 PMCID: PMC8033566 DOI: 10.1021/jacs.1c01556] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Minisci-type reactions constitute one of the most powerful methods for building up complexity around basic heteroarenes. The most desirable variants involve formal oxidative coupling of a C-H bond on each partner, leading back to the simplest possible starting materials. We herein disclose a method that enables such a coupling of linear amides and heteroarenes with full control of enantioselectivity at the newly formed stereocenter as well as site selectivity on both the heteroarene and the amide. This is achieved by the use of a chiral phosphoric acid catalyst in conjunction with diacetyl as a combined hydrogen atom transfer reagent and oxidant. Diacetyl is directly photoexcitable, and thus, no extraneous photocatalyst is required: an added feature that contributes to the simplicity and practicality of the protocol.
Collapse
Affiliation(s)
- Rupert
S. J. Proctor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avene C. Colgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
36
|
Zhou Z, Ji H, Li Q, Zhang Q, Li D. Direct C-H aminocarbonylation of N-heteroarenes with isocyanides under transition metal-free conditions. Org Biomol Chem 2021; 19:2917-2922. [PMID: 33885551 DOI: 10.1039/d1ob00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C-C bond forming amide synthesis through direct C-H aminocarbonylation of N-heteroarenes with isocyanides was developed. The reaction was mediated by an inorganic persulfate salt under transition metal-free conditions. Mechanistic studies suggested a radical pathway for this reaction without the participation of H2O and O2. This method also showed merits of substrate availability, easy operation and atom economy. It provided an efficient route for straightforward synthesis of N-heteroaryl amides.
Collapse
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | |
Collapse
|
37
|
Hou C, Sun S, Liu Z, Zhang H, Liu Y, An Q, Zhao J, Ma J, Sun Z, Chu W. Visible‐Light‐Induced Decarboxylative Acylation of Pyridine
N
‐Oxides with α‐Oxocarboxylic Acids Using Fluorescein Dimethylammonium as a Photocatalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chuanfu Hou
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Shouneng Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Ziqi Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Hui Zhang
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Yue Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Qi An
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Jian Zhao
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Junjie Ma
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| |
Collapse
|
38
|
Zhou Z, Wu Y, Yang P, Deng S, Zhang Q, Li D. Silver‐Catalyzed Cross Dehydrogenative Coupling between Heteroarenes and Cyclic Ethers under Mild Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Yunli Wu
- Ecology and Environment Monitoring and Scientific Research Center Changjiang River Basin Ecology and Environment Administration Ministry of Ecology and Environment Wuhan 430010 China
| | - Peng Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Shijun Deng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
39
|
Parida SK, Hota SK, Kumar R, Murarka S. Late‐Stage Alkylation of Heterocycles Using
N
‐(Acyloxy)phthalimides. Chem Asian J 2021; 16:879-889. [DOI: 10.1002/asia.202100151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Sudhir Kumar Hota
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Raushan Kumar
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Sandip Murarka
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| |
Collapse
|
40
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
41
|
Ermanis K, Colgan AC, Proctor RSJ, Hadrys BW, Phipps RJ, Goodman JM. A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. J Am Chem Soc 2020; 142:21091-21101. [PMID: 33252228 PMCID: PMC7747223 DOI: 10.1021/jacs.0c09668] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
Minisci reaction is one of the most valuable methods for directly
functionalizing basic heteroarenes to form carbon–carbon bonds.
Use of prochiral, heteroatom-substituted radicals results in stereocenters
being formed adjacent to the heteroaromatic system, generating motifs
which are valuable in medicinal chemistry and chiral ligand design.
Recently a highly enantioselective and regioselective protocol for
the Minisci reaction was developed, using chiral phosphoric acid catalysis.
However, the precise mechanism by which this process operated and
the origin of selectivity remained unclear, making it challenging
to develop the reaction more generally. Herein we report further experimental
mechanistic studies which feed into detailed DFT calculations that
probe the precise nature of the stereochemistry-determining step.
Computational and experimental evidence together support Curtin–Hammett
control in this reaction, with initial radical addition being quick
and reversible, and enantioselectivity being achieved in the subsequent
slower, irreversible deprotonation. A detailed survey via DFT calculations
assessed a number of different possibilities for selectivity-determining
deprotonation of the radical cation intermediate. Computations point
to a clear preference for an initially unexpected mode of internal
deprotonation enacted by the amide group, which is a crucial structural
feature of the radical precursor, with the assistance of the associated
chiral phosphate. This unconventional stereodetermining step underpins
the high enantioselectivities and regioselectivities observed. The
mechanistic model was further validated by applying it to a test set
of substrates possessing varied structural features.
Collapse
Affiliation(s)
- Kristaps Ermanis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Avene C Colgan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Rupert S J Proctor
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Barbara W Hadrys
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan M Goodman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
42
|
Nauser T, Gebicki JM. Addition of carbon-centered radicals to aromatic antioxidants: mechanistic aspects. Phys Chem Chem Phys 2020; 22:24572-24582. [PMID: 33094780 DOI: 10.1039/d0cp04469e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several recent studies have shown that the rates of formation of adduct radicals between carbon-centred radicals and aromatic molecules are virtually diffusion-controlled and reversible. This contrasts with "radical addition", the well-known multistep reaction in preparative organic chemistry where the rate-determining initial formation of radical adducts is perceived to be several orders of magnitude slower and virtually irreversible. Using pulse radiolysis and spectroscopic analysis, we have now re-examined parts of this complex mechanism. The results have significant implications for biological systems: electron-rich, aromatic structures may act like buffers for radicals, moderating their reactivity resulting in a much slower reaction determining the overall rate of oxidation. In vivo, an organism would gain time for an appropriate antioxidant reaction.
Collapse
Affiliation(s)
- Thomas Nauser
- Departement für Chemie und Angewandte Biowissenschaften, ETH Zürich, 8093 Zürich, Switzerland.
| | | |
Collapse
|
43
|
Feng A, Yang Y, Liu Y, Geng C, Zhu R, Zhang D. Mechanism and Origins of Enantio- and Regioselectivities in Catalytic Asymmetric Minisci-Type Addition to Heteroarenes. J Org Chem 2020; 85:7207-7217. [PMID: 32420740 DOI: 10.1021/acs.joc.0c00597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work presents a density functional theory (DFT) study on the mechanism and origins of enantio- and regioselectivities in dual photoredox/chiral Brønsted acid-catalyzed asymmetric Minisci-type addition of carbon-centered radicals to N-heteroarenes [Science, 2018, 360, 419-422]. The previously proposed mechanism has been partially revised. First, photoexcited *[IrIII] is reductively quenched by TRIP anion rather than the experimentally proposed neutral radical generated from the chiral Brønsted acid cycle. Second, final product formation involves a hydrogen-atom transfer (HAT) from a neutral radical intermediate to the TRIP radical, instead of single-electron transfer (SET) to *[IrIII]. The TRIP catalyst has been shown to play a triple role by reductively quenching *[IrIII] with its anion form, activating the substrate, and inducing asymmetry. The calculated results rationalize the experimentally observed enantio- and regioselectivities and reveal that the enantioselectivity of the reaction originates from the hydrogen-bond interaction between TRIP and the N-H group of the carbon-centered radical, and the regioselectivity arises from the electron-withdrawing inductive effect from the protonated N-atom and the intramolecular hydrogen-bond interaction between the acetylamino group and the protonated pyridine ring. We also provide explanations for the experimentally observed a dramatic decrease in enantioselectivity when changing substrate or radical precursor and rationalize the solvent-controlled switch of regioselectivity.
Collapse
Affiliation(s)
- Aili Feng
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiying Yang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yanhong Liu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Cuihuan Geng
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.,Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, P. R. China
| | - Rongxiu Zhu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
44
|
Li X, Zhang S, Xu L, Hong X. Predicting Regioselectivity in Radical C−H Functionalization of Heterocycles through Machine Learning. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Li
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Shuo‐Qing Zhang
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Li‐Cheng Xu
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Xin Hong
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| |
Collapse
|
45
|
Li X, Zhang S, Xu L, Hong X. Predicting Regioselectivity in Radical C−H Functionalization of Heterocycles through Machine Learning. Angew Chem Int Ed Engl 2020; 59:13253-13259. [DOI: 10.1002/anie.202000959] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Li
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Shuo‐Qing Zhang
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Li‐Cheng Xu
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Xin Hong
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| |
Collapse
|
46
|
Mills HA, Martin JL, Rheingold AL, Spokoyny AM. Oxidative Generation of Boron-Centered Radicals in Carboranes. J Am Chem Soc 2020; 142:4586-4591. [PMID: 32073842 PMCID: PMC7276281 DOI: 10.1021/jacs.0c00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the first indirect observation and use of boron vertex-centered carboranyl radicals generated by the oxidation of modified carboranyl precursors. These radical intermediates are formed by the direct oxidation of a B-B bond between a boron cluster cage and an exopolyhedral boron-based substituent (e.g., -BF3K, -B(OH)2). The in situ generated radical species are shown to be competent substrates in reactions with oxygen-based radicals, dichalcogenides, and N-heterocycles, yielding the corresponding substituted carboranes containing B-O, B-S, B-Se, B-Te, and B-C bonds. Remarkably, this chemistry tolerates various electronic environments, providing access to facile substitution chemistry at both electron-rich and electron-poor B-H vertices in carboranes.
Collapse
Affiliation(s)
- Harrison A. Mills
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Joshua L. Martin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
47
|
Shen L, Gao X, Luan N, Liu Z, Li J, Zou D, Wu Y, Wu Y. External oxidant-free alkylation of quinoline and pyridine derivatives. Org Biomol Chem 2020; 18:1738-1742. [PMID: 32077880 DOI: 10.1039/c9ob02653c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient method for the generation of alkyl radicals and the alkylation of quinoline and pyridine derivatives under mild conditions has been developed. This strategy allows the direct alkylation of heteroaromatics in the absence of an external oxidant. A preliminary mechanistic study suggests that the present reaction probably proceeds via an intermolecular HAT process.
Collapse
Affiliation(s)
- Linhua Shen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Xianying Gao
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Nannan Luan
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Zhenwei Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Jingya Li
- Tetranov Biopharm, LLC, and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, 450052, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, People's Republic of China. and Tetranov Biopharm, LLC, and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, 450052, People's Republic of China and Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA.
| |
Collapse
|
48
|
Dong J, Wang X, Song H, Liu Y, Wang Q. Photoredox‐Catalyzed Redox‐Neutral Minisci C−H Formylation of
N
‐Heteroarenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
49
|
Leitch JA, Rogova T, Duarte F, Dixon DJ. Dearomative Photocatalytic Construction of Bridged 1,3‐Diazepanes. Angew Chem Int Ed Engl 2020; 59:4121-4130. [DOI: 10.1002/anie.201914390] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jamie A. Leitch
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Tatiana Rogova
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Fernanda Duarte
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
50
|
Leitch JA, Rogova T, Duarte F, Dixon DJ. Dearomative Photocatalytic Construction of Bridged 1,3‐Diazepanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie A. Leitch
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Tatiana Rogova
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Fernanda Duarte
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|