1
|
Malykhin RS, Sukhorukov AY. Nucleophilic Halogenation of Heterocyclic
N
‐Oxides: Recent Progress and a Practical Guide. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman S. Malykhin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect, 47 Moscow 119991 Russia
- M. V. Lomonosov Moscow State University Department of Chemistry Leninskie gory, 1, str. 3 Moscow 119991 Russian Federation
| | - Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect, 47 Moscow 119991 Russia
- Plekhanov Russian University of Economics Stremyanny per. 36 Moscow 117997 Russia
| |
Collapse
|
2
|
Ramu S, Baskar B. A simple and efficient metal free, additive, or base free dehydrogenation of tetrahydroisoquinolines using oxygen as a clean oxidant. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal free dehydrogenation of various substituted tetrahydroisoquinolines via a simple and convenient metal free, atom economical route for the synthesis of corresponding isoquinolines under oxygen atmosphere in N-methyl-2-pyrollidone (NMP) is described. Metal free dehydrogenation was carried out without the use of additive or base. A scope of the methodology was demonstrated for a number of aryl and heteroaryl substitutions present at C1 position and ester moiety at C3 position and was found to be good substrates. Substituted isoquinolines (3a–3h) and their esters (3i–3m) were synthesized in very good to excellent yields.
Collapse
Affiliation(s)
- Shanmugam Ramu
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| | - Baburaj Baskar
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| |
Collapse
|
3
|
Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-Catalyzed Benign and Efficient Oxidation of Tetrahydroisoquinolines and Dihydroisoquinolines Using Air as a Clean Oxidant. ACS OMEGA 2018; 3:8243-8252. [PMID: 31458961 PMCID: PMC6644811 DOI: 10.1021/acsomega.8b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/06/2018] [Indexed: 06/10/2023]
Abstract
A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Feng-Lei Li
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xing-Liang Zhu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Qi-Qi Fan
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Gutteridge CE, Hoffman MM, Bhattacharjee AK, Milhous WK, Gerena L. In vitro efficacy of 7-benzylamino-1-isoquinolinamines against Plasmodium falciparum related to the efficacy of chalcones. Bioorg Med Chem Lett 2011; 21:786-9. [DOI: 10.1016/j.bmcl.2010.11.099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 11/28/2022]
|
5
|
Burrows JN, Waterson D. Discovering New Medicines to Control and Eradicate Malaria. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Discovery and synthesis of 6,7,8,9-tetrahydro-5H-pyrimido-[4,5-d]azepines as novel TRPV1 antagonists. Bioorg Med Chem Lett 2010; 20:7137-41. [DOI: 10.1016/j.bmcl.2010.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022]
|
7
|
Dong J, Shi XX, Yan JJ, Xing J, Zhang Q, Xiao S. Efficient and Practical One-Pot Conversions of N-Tosyltetrahydroisoquinolines into Isoquinolines and of N-Tosyltetrahydro-β-carbolines into β-Carbolines through Tandem β-Elimination and Aromatization. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Deiters E, Song B, Chauvin AS, Vandevyver CDB, Gumy F, Bünzli JCG. Luminescent bimetallic lanthanide bioprobes for cellular imaging with excitation in the visible-light range. Chemistry 2009; 15:885-900. [PMID: 19065695 DOI: 10.1002/chem.200801868] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A series of homoditopic ligands H(2)L(CX) (X=4-6) has been designed to self-assemble with lanthanide ions (Ln(III)), resulting in neutral bimetallic helicates of overall composition [Ln(2)(L(CX))(3)] with the aim of testing the influence of substituents on the photophysical properties, particularly the excitation wavelength. The complex species are thermodynamically stable in water (log beta(23) in the range 26-28 at pH 7.4) and display a metal-ion environment with pseudo-D(3) symmetry and devoid of coordinated water molecules. The emission of Eu(III), Tb(III), and Yb(III) is sensitised to various extents, depending on the properties of the ligand donor levels. The best helicate is [Eu(2)(L(C5))(3)] with excitation maxima at 350 and 365 nm and a quantum yield of 9 %. The viability of cervix cancer HeLa cells is unaffected when incubated with up to 500 mum of the chelate during 24 h. The helicate permeates into the cells by endocytosis and locates into lysosomes, which co-localise with the endoplasmatic reticulum, as demonstrated by counterstaining experiments. The relatively long excitation wavelength allows easy recording of bright luminescent images on a confocal microscope (lambda(exc)=405 nm). The new lanthanide bioprobe remains undissociated in the cell medium, and is amenable to facile derivatisation. Examination of data for seven Eu(III) and Tb(III) bimetallic helicates point to shortcomings in the phenomenological rules of thumb between the energy gap DeltaE((3)pipi*-(5)D(J)) and the sensitisation efficiency of the ligands.
Collapse
Affiliation(s)
- Emmanuel Deiters
- Laboratory of Lanthanide Supramolecular Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | | | | | | | | | | |
Collapse
|