1
|
Ofori P, Zemliana N, Zaffran I, Etzion T, Sionov RV, Steinberg D, Mechoulam R, Kogan NM, Levi-Schaffer F. Antifungal properties of abnormal cannabinoid derivatives: Disruption of biofilm formation and gene expression in Candida species. Pharmacol Res 2024; 209:107441. [PMID: 39368567 DOI: 10.1016/j.phrs.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Abnormal cannabinoids (including comp 3) are a class of synthetic lipid compounds with non-psychoactive properties and regioisomer configurations, but distinct from traditional cannabinoids since they do not interact with the established CB1 and CB2 receptors. Previous research showed the cardioprotective and anti-inflammatory potentials of comp 3 and more recently its antimicrobial effect on methicillin-resistant Staphylococcus aureus (MRSA). Given the escalating challenges posed by Candida infections and the rise of antifungal drug resistance, the exploration of novel therapeutic avenues is crucial. This study aimed to assess the anti-Candida properties of newly synthesized AbnCBD derivatives. AbnCBD derivatives were synthesized by acid catalysis-induced coupling and further derivatized. We evaluated the potential of the AbnCBD derivatives to inhibit the growth stages of various Candida species. By in vitro colorimetric assays and in vivo mice experiments, we have shown that AbnCBD derivatives induce differential inhibition of Candida growth. The AbnCBD derivatives, especially comp 3, comp 10, and comp 9 significantly reduced the growth of C. albicans, including FLC-resistant strains, and of C. tropicalis and C. parapsilosis but not of C auris compared to their controls (FLC and 0.5 % DMSO). Comp 3 also disrupted C. albicans biofilm formation and eradicated mature biofilms. Notably, other derivatives of AbnCBD disrupted the biofilm formation and maturation of C. albicans but did not affect yeast growth. In a murine model of VVC, comp 3 demonstrated significant fungal clearance and reduced C. albicans burden compared to vehicle and FLC controls. These findings highlight the potential of AbnCBDs as promising antifungal agents against Candida infections.
Collapse
Affiliation(s)
- Prince Ofori
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalia Zemliana
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Etzion
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M Kogan
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel; Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Chitra G, Franklin DS, Guhanathan S. Indole-3-acetic acid based tunable hydrogels for antibacterial, antifungal and antioxidant applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1265401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- G. Chitra
- Department of Chemistry, Periyar University, Salem, India
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - D. S. Franklin
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore, India
| |
Collapse
|
3
|
Emrick D, Ravichandran A, Gosai J, Lu S, Gordon DM, Smith L. The antifungal occidiofungin triggers an apoptotic mechanism of cell death in yeast. JOURNAL OF NATURAL PRODUCTS 2013; 76:829-838. [PMID: 23672235 DOI: 10.1021/np300678e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Occidiofungin is a nonribosomally synthesized cyclic peptide having a base mass of 1200 Da. It is naturally produced by the soil bacterium Burkholderia contaminans MS14 and possesses potent broad-spectrum antifungal properties. The mechanism of action of occidiofungin is unknown. Viability, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), reactive oxygen species (ROS) detection, membrane and cell wall stability, and membrane mimetic assays were used to characterize the effect of occidiofungin on yeast cells. Confocal and electron microscopy experiments were used to visualize morphological changes within treated cells. TUNEL and ROS detection assays revealed an increase in fluorescence with increasing concentrations of the antifungal. Yeast cells appeared to shrink in size and showed the presence of 'dancing bodies' at low drug concentrations (1 μg/mL). A screen carried out on Saccharomyces cerevisiae gene deletion mutants in the apoptotic and autophagy pathways identified the apoptotic gene for YCA1, as having an important role in occidiofungin response as cells deleted for this gene exhibit a 2-fold increase in resistance. Results from our experiments demonstrate that the mechanism of action for occidiofungin in yeast is different from that of the common classes of antifungals used in the clinic, such as azoles, polyenes, and echinocandins. Our study also indicates that occidiofungin causes cell death in yeast through an apoptotic mechanism of action.
Collapse
Affiliation(s)
- Dayna Emrick
- Department of Biological Sciences, Mississippi State University , Mississippi State, MS 39762, United States
| | | | | | | | | | | |
Collapse
|
4
|
Solís-Muñoz P, López JC, Bernal W, Willars C, Verma A, Heneghan MA, Wendon J, Auzinger G. Voriconazole hepatotoxicity in severe liver dysfunction. J Infect 2012; 66:80-6. [PMID: 23041040 DOI: 10.1016/j.jinf.2012.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/12/2012] [Accepted: 09/26/2012] [Indexed: 12/28/2022]
Abstract
UNLABELLED There are no studies regarding to these effects in patients with severe liver dysfunction. OBJECTIVES The aims of this study were to characterize voriconazole hepatotoxicity in patients with severe liver dysfunction and to compare it with a matched cohort treated with liposomal amphotericin B. METHODS This is an observational study, in which adults patients treated with at least 4 doses of voriconazole were included. Patients treated with liposomal amphotericin B were used as control group. RESULTS Sixty nine percent of patients treated with voriconazole showed changes in liver function tests (LFTs) during therapy. They showed elevated transaminases in 35%, cholestasis in 15% or a combination of both in 45%. According to the CTC classification, all patients with hepatotoxicity had a severe reaction. The Roussel Uclaf Causality Assessment Method score in all patients with hepatotoxicity was greater than 8. There was a correlation between initial loading dose greater than 300 mg (4.5 mg/kg) and the risk of hepatotoxicity (p < 0.001). The control group developed alterations in the LFTs in only 10.3% of patients. CONCLUSION Voriconazole should be used with caution in patients with severe liver dysfunction and following liver transplantation, with frequent monitoring of LFTs or using liposomal amphotericin B instead.
Collapse
Affiliation(s)
- Pablo Solís-Muñoz
- Liver Intensive Therapy Unit, Institute of Liver Studies, Kings College Hospital of London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Petrlíková E, Waisser K, Buchta V, Jílek P, Vejsová M. N-Benzylsalicylthioamides as novel compounds with promising antimycotic activity. Bioorg Med Chem Lett 2010; 20:4535-8. [DOI: 10.1016/j.bmcl.2010.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/17/2022]
|
6
|
Hudson SP, Langer R, Fink GR, Kohane DS. Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 2009; 31:1444-52. [PMID: 19942285 DOI: 10.1016/j.biomaterials.2009.11.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Invasive fungal infections can be devastating, particularly in immunocompromised patients, and difficult to treat with systemic drugs. Furthermore, systemic administration of those medications can have severe side effects. We have developed an injectable local antifungal treatment for direct administration into existing or potential sites of fungal infection. Amphotericin B (AmB), a hydrophobic, potent, and broad-spectrum antifungal agent, was rendered water-soluble by conjugation to a dextran-aldehyde polymer. The dextran-aldehyde-AmB conjugate retained antifungal efficacy against Candida albicans. Mixing carboxymethylcellulose-hydrazide with dextran-aldehyde formed a gel that cross-linked in situ by formation of hydrazone bonds. The gel provided in vitro release of antifungal activity for 11 days, and contact with the gel killed Candida for three weeks. There was no apparent tissue toxicity in the murine peritoneum and the gel caused no adhesions. Gels produced by entrapment of a suspension of AmB in CMC-dextran without conjugation of drug to polymers did not release fungicidal activity, but did kill on contact. Injectable systems of these types, containing soluble or insoluble drug formulations, could be useful for treatment of local antifungal infections, with or without concurrent systemic therapy.
Collapse
Affiliation(s)
- Sarah P Hudson
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|