1
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
2
|
Jiang L, Song J, Qi M, Cao Y, Li Y, Xu M, Li L, Zhang D, Wang C, Li H. Carbon and nitrogen sources consumption by ale and lager yeast strains: a comparative study during fermentation. Appl Microbiol Biotechnol 2023; 107:6937-6947. [PMID: 37704770 DOI: 10.1007/s00253-023-12778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The rapid and efficient consumption of carbon and nitrogen sources by brewer's yeast is critical for the fermentation process in the brewing industry. The comparison of the growth characterizations of typical ale and lager yeast, as well as their consumption preference to carbon and nitrogen sources were investigated in this study. Results showed that the ale strain grew faster and had a more extended stationary phase than the lager strain. However, the lager strain was more tolerant to the stressful environment in the later stage of fermentation. Meanwhile, the ale and lager yeast strains possessed varying preferences for metabolizing the specific fermentable sugar or free amino acid involved in the wort medium. The lager strain had a strong capacity to synthesize the extracellular invertase required for hydrolyzing sucrose as well as a strong capability to metabolize glucose and fructose. Furthermore, the lager strain had an advantage in consuming Lys, Arg, Val, and Phe, whereas the ale strain had a higher assimilation rate in consuming Tyr. These findings provide valuable insights into selecting the appropriate brewer's yeast strain based on the wort components for the industrial fermentation process. KEY POINTS: • The lager strain is more tolerant to the stressful environment. • The lager strain has the great capability to synthesize the extracellular invertase. • The assimilation efficiency of free amino acid varies between ale and lager.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yuechao Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yueming Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Mei Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| |
Collapse
|
3
|
Gupte AP, Pierantoni DC, Conti A, Donati L, Basaglia M, Casella S, Favaro L, Corte L, Cardinali G. Renewing Lost Genetic Variability with a Classical Yeast Genetics Approach. J Fungi (Basel) 2023; 9:jof9020264. [PMID: 36836378 PMCID: PMC9958831 DOI: 10.3390/jof9020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Due to their long domestication time course, many industrial Saccharomyces cerevisiae strains are adopted in numerous processes mostly for historical reasons instead of scientific and technological needs. As such, there is still significant room for improvement for industrial yeast strains relying on yeast biodiversity. This paper strives to regenerate biodiversity with the innovative application of classic genetic methods to already available yeast strains. Extensive sporulation was indeed applied to three different yeast strains, specifically selected for their different origins as well as backgrounds, with the aim of clarifying how new variability was generated. A novel and easy method to obtain mono-spore colonies was specifically developed, and, to reveal the extent of the generated variability, no selection after sporulation was introduced. The obtained progenies were then tested for their growth in defined mediums with high stressor levels. A considerable and strain-specific increase in both phenotypic and metabolomic variability was assessed, and a few mono-spore colonies were found to be of great interest for their future exploitation in selected industrial processes.
Collapse
Affiliation(s)
- Ameya Pankaj Gupte
- Department of Agronomy Food natural Resources Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | | | - Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy
| | - Leonardo Donati
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy
| | - Marina Basaglia
- Department of Agronomy Food natural Resources Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - Sergio Casella
- Department of Agronomy Food natural Resources Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - Lorenzo Favaro
- Department of Agronomy Food natural Resources Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
- Correspondence: (L.F.); (L.C.)
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy
- Correspondence: (L.F.); (L.C.)
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy
| |
Collapse
|
4
|
Extrusion modification of cassava flour for improved mashing efficiency. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Latorre M, Bruzone MC, de Garcia V, Libkind D. [Microbial contaminants in bottled craft beer of Andean Patagonia, Argentina]. Rev Argent Microbiol 2023; 55:88-99. [PMID: 35738976 DOI: 10.1016/j.ram.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The brewing activity in Andean Patagonia plays a very important role in the region's economy, being microbial contamination one of the main problems in terms of quality. The presence of contaminant bacteria and wild yeasts in beer generate microbiological, physical and chemical changes that impact on its sensory attributes. However, few breweries establish criteria and policies to guarantee the quality of their products in a microbiological sense. The purpose of this work was to study for the first time the incidence of microbial contaminants in bottled craft beers from Andean Patagonia, identify the main microorganisms involved and establish relationships between contamination and the physicochemical variables of beer. We analyzed 75 beers from 37 breweries from 12 different Patagonian cities. Our results showed that 69.3% of the analyzed beer exhibited contaminant microorganism growth. Bacteria Levilactobacillus brevis and wild yeasts of Saccharomyces were the main microorganisms responsible for these contaminations. In addition, we found that microbial contamination had an impact on beer sensory profile and also that pH was correlated with the presence of lactic acid bacteria in beer, being an indicator of contamination for these bacteria. In conclusion, we observed that 8 out of 10 breweries studied showed contamination problems, highlighting the need to design prevention and control strategies in microbreweries.
Collapse
Affiliation(s)
- Mailen Latorre
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - M Clara Bruzone
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - Virginia de Garcia
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Neuquén, Buenos Aires, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina.
| |
Collapse
|
6
|
Production and Analysis of Beer Supplemented with Chlorella vulgaris Powder. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The microalgae Chlorella vulgaris is a cheap source of nutrients and bioactive compounds, and thus is used in many interventional studies. This study evaluated the potential effects of C. vulgaris powder on fermentation parameters; sensory, phytochemical, and antioxidant activity; and the abundance of volatile organic compounds (VOCs) of treated versus control beers. A German Pilsner-style lager beer (GPB) was brewed and supplemented with C. vulgaris at various levels (3.3, 5, and 10 g/L) after primary fermentation. The apparent °Brix and pH was used to monitor the progress of fermentation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) was used to measure the antioxidant activity of beers. Addition of C. vulgaris increased the concentration of total polyphenols, total flavonoids, and antioxidant activity of treated beers (CGB) compared to the control (GPB). Treatment had no effects (p > 0.05) on higher alcohols such as 3-methyl-1-butanol, 2-hexanol, and phenylethyl alcohol. An increase in the concentration of C. vulgaris had no significant effects on sensory perception of enriched beers. The results showed that C. vulgaris could be used as a potential ingredient for designing functional beer with improved health benefits.
Collapse
|
7
|
Romero-Rodríguez R, Durán-Guerrero E, Castro R, Díaz AB, Lasanta C. Evaluation of the Influence of the Microorganisms Involved in the Production of Beers on their Sensory Characteristics. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Tarimo CB, Kaale LD. Use of Yeasts in Traditional Alcoholic Beverages in Tanzania and Potential Opportunities. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2013677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Brayson Tarimo
- Department of Food Science and Technology, University of Dar es Salaam (UDSM), Dar es Salaam, Tanzania
- Quality Management Department, Tanzania Bureau of Standards (TBS), Dar es Salaam, Tanzania
| | - Lilian Daniel Kaale
- Department of Food Science and Technology, University of Dar es Salaam (UDSM), Dar es Salaam, Tanzania
| |
Collapse
|
9
|
Drosou F, Anastasakou K, Tataridis P, Dourtoglou V, Oreopoulou V. Evaluation of Commercial Strains of Torulaspora delbrueckii in Beer Production. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2025327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fotini Drosou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
- Department of Department of Wine, Vine and Beverage Sciences, University of West Attica Egaleo, Athens, Greece
| | - Katerina Anastasakou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Panagiotis Tataridis
- Department of Department of Wine, Vine and Beverage Sciences, University of West Attica Egaleo, Athens, Greece
| | - Vassilis Dourtoglou
- Department of Department of Wine, Vine and Beverage Sciences, University of West Attica Egaleo, Athens, Greece
| | - Vassiliki Oreopoulou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
10
|
Experimental Whisky Fermentations: Influence of Wort Pretreatments. Foods 2021; 10:foods10112755. [PMID: 34829036 PMCID: PMC8624260 DOI: 10.3390/foods10112755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
In addition to ethanol yield, the production of flavour congeners during fermentation is a major consideration for Scotch whisky producers. Experimental whisky fermentations can provide useful information to the industry, and this is the focus of this paper. This study investigated the impact of wort pretreatments (boiled, autoclaved, filtered) on fermentation performance and flavour development in Scotch whisky distillates as an alternative to freezing wort for storage. Our study showed that no significant sensorial differences were detected in low wines (first distillates), while the chemical compositions showed clear changes in increased levels of esters and higher alcohols in boiled and autoclaved wort. In contrast, filtered wort comprised overall lower levels of congeners. Regarding alcohol yield, all three pretreatments resulted in decreased yields. In practice, the pretreatment of wort prior to fermentation requires additional process operations, while freezing requires large storage units. The pretreatments adopted in this study significantly influence the composition of the malt wort used for experimental whisky fermentations, and this results in a poorer fermentation performance compared with untreated wort. We recommend the use of fresh or frozen wort as the best options for small-scale fermentation trials.
Collapse
|
11
|
Donnelly D, Blanchard L, Dabros M, O’Hara S, Brabazon D, Foley G, Freeland B. Fed-Batch System for Propagation of Brewer’s Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1937471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - L. Blanchard
- School of Engineering and Architecture of Fribourg, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - M. Dabros
- School of Engineering and Architecture of Fribourg, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - S. O’Hara
- Carlow Brewing Company, Bagenalstown, Co. Carlow, Ireland
| | - D. Brabazon
- I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin 9, Ireland
- Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - G. Foley
- I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin 9, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - B. Freeland
- I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin 9, Ireland
- Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
12
|
Drosou F, Anastasakou K, Tataridis P, Dourtoglou V, Oreopoulou V. Study of the Fermentation Kinetics and Secondary Metabolites of Torulaspora delbrueckii Yeasts from Different Substrates. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1915660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fotini Drosou
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Egaleo, Athens, Greece
| | - Katerina Anastasakou
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Panagiotis Tataridis
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Egaleo, Athens, Greece
| | - Vassilis Dourtoglou
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Egaleo, Athens, Greece
| | - Vassiliki Oreopoulou
- School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
13
|
Flocculation Type and the Lg-FLO1 Gene of Bottom-Fermenting Yeast Are Derived from Top-Fermenting Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
The Profiles of Low Molecular Nitrogen Compounds and Fatty Acids in Wort and Beer Obtained with the Addition of Quinoa ( Chenopodium quinoa Willd.), Amaranth ( Amaranthus cruentus L.) or Maltose Syrup. Foods 2020; 9:foods9111626. [PMID: 33171817 PMCID: PMC7695022 DOI: 10.3390/foods9111626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Replacement of a part of malt with unmalted materials is a common practice in beer production. These materials may differ in chemical composition than barley malt, which in turn can contribute to changes in the final composition of the wort. Consequently, it may affect yeast metabolism and final parameters of the obtained products. In this research, two unmalted pseudocereals were used: quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus cruentus L.). Maltose syrup was tested as a reference material due to its commercial usage as a substitute of malt in production of worts. Replacement of a part of the malt with quinoa or amaranth favorably influenced the profiles of amino and fatty acids. Due to the fact that the type and concentration of individual amino acids and fatty acids in the fermented wort significantly affect the flavor compounds synthesized by yeast, differences in the profiles of esters and higher alcohol have been noted in beers produced with pseudocereals.
Collapse
|
15
|
Puligundla P, Smogrovicova D, Mok C, Obulam VSR. Recent developments in high gravity beer-brewing. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Moutsoglou ME, Dearden AC. Effect of the respiro-fermentative balance during yeast propagation on fermentation and wort attenuation. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria E. Moutsoglou
- Sierra Nevada Brewing Company, Research and Development; 1075 East 20 St. Chico CA 95926 USA
| | - Ashley C. Dearden
- Sierra Nevada Brewing Company, Research and Development; 1075 East 20 St. Chico CA 95926 USA
| |
Collapse
|
17
|
Munford ARG, Chaves RD, Sant'Ana AS. Inactivation kinetics of beer spoilage bacteria (Lactobacillus brevis, Lactobacillus casei, and Pediococcus damnosus) during acid washing of brewing yeast. Food Microbiol 2020; 91:103513. [PMID: 32539960 DOI: 10.1016/j.fm.2020.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/25/2022]
Abstract
This work aimed to estimate the inactivation kinetic parameters of four potential beer spoilage bacteria (Lactobacillus brevis DSM 6235, Lactobacillus casei ATCC 334, Pediococcus damnosus DSM 20289 and Pediococcus damnosus ATCC 29358) inoculated in brewing yeast submitted to acid washing with purposes of yeast recycle. The experiments were conducted at 4 °C in solutions with pH 1.5, pH 2, and pH 3 adjusted employing 85% phosphoric acid. The acid washing treatment of brewing yeasts in the most common pH used (pH 2.0) demanded almost 50 min for the first decimal reduction (δ) of L. brevis DSM 6235. Sensible strains to acid washing such as P. damnosus DSM 20289 demanded almost 70 min for 4 log reductions to be achieved. On the other hand, pH reduction of the acid washing from 2.0 to 1.5 allowed 4 log reduction of L. brevis DSM 6235) to be obtained in less than 50 min, without ruining brewer's yeast viability. Acid washing in pH 1.5 is a viable method for the inactivation of bacterial contaminants of brewing yeasts. Recycling of brewing yeasts through this approach may contribute to a more sustainable and environmental-friendly industry.
Collapse
Affiliation(s)
- Allan R G Munford
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rafael D Chaves
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
18
|
Munford ARG, Chaves RD, Granato D, Sant'Ana AS. Modeling the inactivation of Lactobacillus brevis DSM 6235 and retaining the viability of brewing pitching yeast submitted to acid and chlorine washing. Appl Microbiol Biotechnol 2020; 104:4071-4080. [PMID: 32179950 DOI: 10.1007/s00253-020-10534-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/01/2022]
Abstract
This study aimed to model the inactivation of Lactobacillus brevis DSM 6235 while retaining the viability of yeasts during washing brewer's yeast with phosphoric acid and chlorine dioxide. The independent variables in the acid washing were pH (1-3) and temperature (1-9 °C), whereas in the washing with chlorine dioxide, concentration (10-90 mg/L) and temperature (5-25 °C) were assessed. The predictive models obtained for the four response variables γLA, γCl (decimal reduction of L. brevis DSM 6235), Vf/V0LA, and Vf/V0Cl (brewer's yeast viability ratio) were found to have R2 > 0.80 and values of Fcalc > Freference. Then, the models were considered predictive and statistically significant (p < 0.10). Our results indicated that phosphoric acid and chlorine dioxide washing resulted in up to 7 and 6.4 (log CFU/mL) decimal reductions of L. brevis DSM 6235, respectively. On the other hand, the viability of the brewer's yeast ranged from 22.3 to 99.4%. L. brevis DSM 6235 inactivation was significantly influenced by parameters pH(Q) and T°C(Q) when phosphoric acid was applied, and by parameters mg/L(L), mg/L(Q), T°C(Q), and mg/L × T°C when ClO2 was applied. The validation of the models resulted in bias (γLA, 0.93/Vf/V0LA, 0.99 - γCl, 1.0/Vf/V0Cl, 0.99) and accuracy values (γLA, 1.12/Vf/V0LA, 1.01 - γCl, 1.08/Vf/V0Cl, 1.03). The results of this study indicate that it might be possible to decontaminate brewer's yeast through acid and chlorine dioxide washing while keeping its viability. This procedure will result in the reduction of costs and the lower generation of brewer's waste.
Collapse
Affiliation(s)
- Allan R G Munford
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rafael D Chaves
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System Unit, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
19
|
Effect of ageing on lees and distillation process on fermented sugarcane molasses for the production of rum. Food Chem 2020; 303:125405. [DOI: 10.1016/j.foodchem.2019.125405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
|
20
|
Monteiro F, Hubmann G, Takhaveev V, Vedelaar SR, Norder J, Hekelaar J, Saldida J, Litsios A, Wijma HJ, Schmidt A, Heinemann M. Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol Syst Biol 2019; 15:e9071. [PMID: 31885198 PMCID: PMC6920703 DOI: 10.15252/msb.20199071] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic heterogeneity between individual cells of a population harbors significant challenges for fundamental and applied research. Identifying metabolic heterogeneity and investigating its emergence require tools to zoom into metabolism of individual cells. While methods exist to measure metabolite levels in single cells, we lack capability to measure metabolic flux, i.e., the ultimate functional output of metabolic activity, on the single-cell level. Here, combining promoter engineering, computational protein design, biochemical methods, proteomics, and metabolomics, we developed a biosensor to measure glycolytic flux in single yeast cells. Therefore, drawing on the robust cell-intrinsic correlation between glycolytic flux and levels of fructose-1,6-bisphosphate (FBP), we transplanted the B. subtilis FBP-binding transcription factor CggR into yeast. With the developed biosensor, we robustly identified cell subpopulations with different FBP levels in mixed cultures, when subjected to flow cytometry and microscopy. Employing microfluidics, we were also able to assess the temporal FBP/glycolytic flux dynamics during the cell cycle. We anticipate that our biosensor will become a valuable tool to identify and study metabolic heterogeneity in cell populations.
Collapse
Affiliation(s)
- Francisca Monteiro
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
cE3c‐Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Georg Hubmann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Laboratory of Molecular Cell BiologyDepartment of BiologyInstitute of Botany and MicrobiologyKU Leuven, & Center for Microbiology, VIBHeverlee, FlandersBelgium
| | - Vakil Takhaveev
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Silke R Vedelaar
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Justin Norder
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Johan Hekelaar
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Joana Saldida
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Athanasios Litsios
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Hein J Wijma
- Biotechnology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | | | - Matthias Heinemann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
21
|
Serial re-pitching: its effect on yeast physiology, fermentation performance, and product quality. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01493-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
22
|
Abstract
The role of nitrogenous components in malt and wort during the production of beer has long been recognized. The concentration and range of wort amino acids impact on ethanolic fermentation by yeast and on the production of a range of flavour and aroma compounds in the final beer. This review summarizes research on Free Amino Nitrogen (FAN) within brewing, including various methods of analysis.
Collapse
|
23
|
Improving Fermentation Rate during Use of Corn Grits in Beverage Alcohol Production. BEVERAGES 2019. [DOI: 10.3390/beverages5010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corn grits are commonly used adjuncts in the brewing industry in the United States, especially for lager beers. The major challenge of using a high amount of adjuncts in the brewing process is reduced levels of nutrients available to yeast during fermentation, which negatively affects the growth and functioning of yeast, and results in sluggish fermentation. The problem is usually addressed by adding external nutrition. The objective of this work was to assess the suitability of corn components other than brewer’s grits to improve the fermentation rates. Water obtained after soaking of corn germ, a vital source of lipids and soluble proteins, was investigated as a source of nutrient during brewing of 40:60 (w/w) corn grits and malt mixture. Performance of water-soluble nutrients from germ of two corn verities, yellow dent corn and flint corn, was investigated. Germ soak water was added during corn grits slurry formation before mashing. The addition of germ water increased the free amino nitrogen levels by 37% and Zn concentrations by 3.6 times in the wort, which resulted in up to a 28% higher fermentation rate (between 48 to 72 h of fermentation) and shortened the fermentation time from 120 to 96 h. The use of water obtained from the soaking of flint corn germ resulted in a similar shortening of fermentation time. In another approach, nutrient-rich concentrated germ soak water was directly added into the wort, which also resulted in similar improvements in the fermentation rate as those from adding germ soak water during slurry formation. Due to leaching of micronutrients and soluble proteins, the oil concentrations in the germ increased by more than 30%, enhancing its economic value.
Collapse
|
24
|
Kordialik‐Bogacka E, Bogdan P, Ciosek A. Effects of quinoa and amaranth on zinc, magnesium and calcium content in beer wort. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edyta Kordialik‐Bogacka
- Institute of Fermentation Technology and Microbiology Faculty of Biotechnology and Food Sciences Lodz University of Technology 171/173 Wolczanska Street 90‐924 Lodz Poland
| | - Paulina Bogdan
- Institute of Fermentation Technology and Microbiology Faculty of Biotechnology and Food Sciences Lodz University of Technology 171/173 Wolczanska Street 90‐924 Lodz Poland
| | - Aneta Ciosek
- Faculty of Food Technology University of Agriculture in Krakow 122 Balicka Street 30‐149 Cracow Poland
| |
Collapse
|
25
|
De Francesco G, Sannino C, Sileoni V, Marconi O, Filippucci S, Tasselli G, Turchetti B. Mrakia gelida in brewing process: An innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol 2018; 76:354-362. [DOI: 10.1016/j.fm.2018.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
|
26
|
Nguyen HV, Boekhout T. Characterization of Saccharomyces uvarum (Beijerinck, 1898) and related hybrids: assessment of molecular markers that predict the parent and hybrid genomes and a proposal to name yeast hybrids. FEMS Yeast Res 2018; 17:3061370. [PMID: 28334169 DOI: 10.1093/femsyr/fox014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The use of the nuclear DNA reassociation technique has led taxonomists to consider Saccharomyces uvarum a synonym of S. bayanus. The latter, however, is not a species but a hybrid harbouring S. eubayanus (Seu) and S. uvarum (Su) subgenomes with a minor DNA contribution from S. cerevisiae (Sc). To recognize genetically pure lines of S. uvarum and putative interspecies hybrids among so-called S. bayanus strains present in public culture collections, we propose the use of four markers that were defined from the S. bayanus CBS 380T composite genome, namely SeuNTS2 (rDNA), ScMAL31, MTY1 and SuMEL1. Saccharomyces carlsbergensis CBS 1513 was found to be similar to S. bayanus except that it carries the SeuMEL1 allele. Different marker combinations revealed that among 33 strains examined only a few were similar to CBS 380T, but many pure S. uvarum lines and putative Su/Seu-related hybrids occurred. Our results demonstrated that these hybrids were erroneously considered authentic S. bayanus and therefore the varietal state 'Saccharomyces bayanus var. uvarum comb. nov. Naumov' is not valid. Our markers constitute a tool to get insights into the genomic makeup of Saccharomyces interspecies hybrids. We also make a proposal to name those hybrids that may also be applicable to other fungal hybrids.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
|
28
|
Kopecká J, Němec M, Matoulková D, Čejka P, Jelínková M, Felsberg J, Sigler K. Effect of Growth Conditions on Flocculation and Cell Surface Hydrophobicity of Brewing Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0324-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jana Kopecká
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Miroslav Němec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Dagmar Matoulková
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic
| | - Pavel Čejka
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic
| | - Markéta Jelínková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jürgen Felsberg
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
29
|
Karabín M, Jelínek L, Kotrba P, Cejnar R, Dostálek P. Enhancing the performance of brewing yeasts. Biotechnol Adv 2017; 36:691-706. [PMID: 29277309 DOI: 10.1016/j.biotechadv.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022]
Abstract
Beer production is one of the oldest known traditional biotechnological processes, but is nowadays facing increasing demands not only for enhanced product quality, but also for improved production economics. Targeted genetic modification of a yeast strain is one way to increase beer quality and to improve the economics of beer production. In this review we will present current knowledge on traditional approaches for improving brewing strains and for rational metabolic engineering. These research efforts will, in the near future, lead to the development of a wider range of industrial strains that should increase the diversity of commercial beers.
Collapse
Affiliation(s)
- Marcel Karabín
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Lukáš Jelínek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Rudolf Cejnar
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Pavel Dostálek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic.
| |
Collapse
|
30
|
Brickwedde A, van den Broek M, Geertman JMA, Magalhães F, Kuijpers NGA, Gibson B, Pronk JT, Daran JMG. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Front Microbiol 2017; 8:1690. [PMID: 28943864 PMCID: PMC5596070 DOI: 10.3389/fmicb.2017.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | | | | | - Niels G A Kuijpers
- HEINEKEN Supply Chain, Global Innovation and ResearchZoeterwoude, Netherlands
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
31
|
|
32
|
Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1634-1642. [DOI: 10.1016/j.bbalip.2016.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
|
33
|
Krogerus K, Arvas M, De Chiara M, Magalhães F, Mattinen L, Oja M, Vidgren V, Yue JX, Liti G, Gibson B. Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl Microbiol Biotechnol 2016; 100:7203-22. [PMID: 27183995 PMCID: PMC4947488 DOI: 10.1007/s00253-016-7588-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022]
Abstract
The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma compound and sugar concentrations. The hybrid strains with higher DNA content performed better during fermentation and produced higher concentrations of flavor-active esters in both worts. The hybrid strains also outperformed both the parent strains. Genome sequencing revealed that several genes related to the formation of flavor-active esters (ATF1, ATF2¸ EHT1, EEB1, and BAT1) were present in higher copy numbers in the higher ploidy hybrid strains. A direct relationship between gene copy number and transcript level was also observed. The measured ester concentrations and transcript levels also suggest that the functionality of the S. cerevisiae- and S. eubayanus-derived gene products differs. The results contribute to our understanding of the complex molecular mechanisms that determine phenotypes in lager yeast hybrids and are expected to facilitate targeted strain development through interspecific hybridization.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland.
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland.
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Matteo De Chiara
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, FI-00076, Espoo, Finland
| | - Laura Mattinen
- ValiRx Finland Oy, Kiviharjuntie 8, FI-90220, Oulu, Finland
| | - Merja Oja
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Jia-Xing Yue
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, 06107, Nice, France
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
34
|
Petruzzi L, Rosaria Corbo M, Sinigaglia M, Bevilacqua A. Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1075211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
New lager yeast strains generated by interspecific hybridization. J Ind Microbiol Biotechnol 2015; 42:769-78. [PMID: 25682107 PMCID: PMC4412690 DOI: 10.1007/s10295-015-1597-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
Abstract
The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.
Collapse
|
36
|
Affiliation(s)
- Graham G. Stewart
- G. G. Stewart Associates, Rhiwbina, Cardiff, Wales, United Kingdom, CF14 6RP
- International Centre for Brewing and Distilling, Heriot-Watt University, Edinburgh, Scotland, United Kingdom, EH14 4AS
| |
Collapse
|
37
|
He Y, Dong J, Yin H, Zhao Y, Chen R, Wan X, Chen P, Hou X, Liu J, Chen L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer - a review. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.145] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Yuxiang Zhao
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Rong Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Peng Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Xiaoping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Jia Liu
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| | - Lu Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewing Ltd; Qingdao 266061 People's Republic of China
| |
Collapse
|
38
|
Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2236-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|