1
|
Abstract
Although beer is a widely used beverage in many cultures, there is a need for a new drinking alternative in the face of rising issues such as health concerns or weight problems. However, non-alcoholic and low-alcoholic beers (NABLAB) still have some sensory problems that have not been fully remedied today, such as “wort-like”/”potato-like” flavours or a lack of aroma. These defects are due to the lack of alcohol (and the lack of the aldehyde-reducing effect of alcohol fermentation), as well as production techniques. The use of new yeast strains that cannot ferment maltose—the foremost sugar in the wort—is highly promising to produce a more palatable and sustainable NABLAB product because production with these yeast strains can be performed with standard brewery equipment. In the scientific literature, it is clear that interest in the production of NABLAB has increased recently, and experiments have been carried out with maltose-negative yeast strains isolated from many different environments. This study describes maltose-negative yeasts and their aromatic potential for the production of NABLAB by comprehensively examining recent academic studies.
Collapse
|
2
|
Simbaña J, Portero-Barahona P, Carvajal Barriga EJ. Wild Ecuadorian Saccharomyces cerevisiae Strains and Their Potential in the Malt-Based Beverages Industry. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1945366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jennifer Simbaña
- Neotropical Center for Biomass Research, Pontificia Universidad Católica del Ecuador, The Catholic University Yeasts Collection-Quito, Quito, Ecuador
| | - Patricia Portero-Barahona
- Neotropical Center for Biomass Research, Pontificia Universidad Católica del Ecuador, The Catholic University Yeasts Collection-Quito, Quito, Ecuador
| | - Enrique Javier Carvajal Barriga
- Neotropical Center for Biomass Research, Pontificia Universidad Católica del Ecuador, The Catholic University Yeasts Collection-Quito, Quito, Ecuador
| |
Collapse
|
3
|
Lebleux M, Denimal E, De Oliveira D, Marin A, Desroche N, Alexandre H, Weidmann S, Rousseaux S. Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool. J Fungi (Basel) 2021; 7:jof7080581. [PMID: 34436120 PMCID: PMC8396822 DOI: 10.3390/jof7080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.
Collapse
Affiliation(s)
- Manon Lebleux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
- Correspondence:
| | - Emmanuel Denimal
- AgroSup Dijon, Direction Scientifique, Appui à la Recherche, 26 Boulevard Docteur Petitjean, F-21000 Dijon, France;
| | - Déborah De Oliveira
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Ambroise Marin
- Plateau D’imagerie DimaCell, Esplanade Erasme, Agrosup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France;
| | | | - Hervé Alexandre
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Stéphanie Weidmann
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Sandrine Rousseaux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| |
Collapse
|
4
|
Abstract
Nowadays, in the beer sector, there is a wide range of products, which differ for the technologies adopted, raw materials used, and microorganisms involved in the fermentation processes. The quality of beer is directly related to the fermentation activity of yeasts that, in addition to the production of alcohol, synthesize various compounds that contribute to the definition of the compositional and organoleptic characteristics. The microbrewing phenomenon (craft revolution) and the growing demand for innovative and specialty beers has stimulated researchers and brewers to select new yeast strains possessing particular technological and metabolic characteristics. Up until a few years ago, the selection of starter yeasts used in brewing was exclusively carried out on strains belonging to the genus Saccharomyces. However, some non-Saccharomyces yeasts have a specific enzymatic activity that can help to typify the taste and beer aroma. These yeasts, used as a single or mixed starter with Saccharomyces strains, represent a new biotechnological resource to produce beers with particular properties. This review describes the role of Saccharomyces and non-Saccharomyces yeasts in brewing, and some future biotechnological perspectives.
Collapse
|
5
|
Metagenomic-based Approach for the Analysis of Yeast Diversity Associated with Amylase Production in Lai (Durio kutejensis). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study reported the application of a next generation sequencing (NGS) analysis of yeast diversity in native Indonesian fruit, Durio kutejensis, collected from Borneo, Central Kalimantan. The analysis was designed to observe the microbial consortium associated with solid state fermentation (SSF) for amylase production. Together with the additional data from culture-dependent analysis, we observed the morphological features, molecular characteristics, and amylase concentration produced by each isolate. We performed Solid State Fermentation (SSF) for amylase production and the enzyme activity was then determined using UV-Vis spectrophotometer at 540 nm. Result obtained from metagenomic approach consist of 4 group that fungal species included in the Ascomycota identified as Botryosphaeria dothidea (1.35%), Lasiodiplodia crassispora (17.62%), Aureobasidium pullulans (55.02%), Paraphoma chrysanthemicola (11.38%), Preussia funiculate (1.90%), Sporormiella intermedia (0.82%), Myrothecium gramineum (1.35%), Fusarium oxysporum (6.24%), Fusarium proliferatum (3.25%) and Phialemoniopsis curvata (1.08%). The results of isolation using culturable medium in the form of YMA obtained 40 yeast isolates. A total of 40 representative isolates from durian fruit were screened, two positive amylase isolates based on clear zones formed were DU 4.2 (Candida sorboxylosa) and DU4.22 (Cyberlindnera fabianii) isolates with amylolytic index of DU 4.2 isolates at 0.24 and DU 4.22 at 0.72 with an incubation time of 48 h. The highest amylase enzyme activity was found in isolate DU 4.2 of 31.21 U / mL.
Collapse
|
6
|
Thomas K, Ironside K, Clark L, Bingle L. Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keith Thomas
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Kayleigh Ironside
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| | - Lisa Clark
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Lewis Bingle
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| |
Collapse
|
7
|
Michel M, Meier-Dörnberg T, Jacob F, Methner FJ, Wagner RS, Hutzler M. Review: Pure non-Saccharomycesstarter cultures for beer fermentation with a focus on secondary metabolites and practical applications. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.381] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Maximilian Michel
- Research Centre Weihenstephan for Beer and Food Quality; Technische Universität München; Alte Akademie 3 85354 Freising Germany
| | - Tim Meier-Dörnberg
- Research Centre Weihenstephan for Beer and Food Quality; Technische Universität München; Alte Akademie 3 85354 Freising Germany
| | - Fritz Jacob
- Research Centre Weihenstephan for Beer and Food Quality; Technische Universität München; Alte Akademie 3 85354 Freising Germany
| | | | - R. Steven Wagner
- Brewing Program; Central Washington University; 400 E University Way, Ellensburg Washington USA
| | - Mathias Hutzler
- Research Centre Weihenstephan for Beer and Food Quality; Technische Universität München; Alte Akademie 3 85354 Freising Germany
| |
Collapse
|
8
|
Lentz M, Harris C. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast. Foods 2015; 4:581-593. [PMID: 28231223 PMCID: PMC5224551 DOI: 10.3390/foods4040581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/29/2015] [Accepted: 10/10/2015] [Indexed: 12/25/2022] Open
Abstract
Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.
Collapse
Affiliation(s)
- Michael Lentz
- Department of Biological Sciences, University of North Florida, Jacksonville, FL 32224, USA.
| | - Chad Harris
- Department of Biological Sciences, University of North Florida, Jacksonville, FL 32224, USA.
| |
Collapse
|