1
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
2
|
Looseley ME, Ramsay L, Bull H, Swanston JS, Shaw PD, Macaulay M, Booth A, Russell JR, Waugh R, Thomas WTB. Association mapping of malting quality traits in UK spring and winter barley cultivar collections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2567-2582. [PMID: 32506274 PMCID: PMC7419451 DOI: 10.1007/s00122-020-03618-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Historical malting quality data was collated from UK national and recommended list trial data and used in a GWAS. 25 QTL were identified, with the majority from spring barley cultivar sets. In Europe, the most economically significant use of barley is the production of malt for use in the brewing and distilling industries. As such, selection for traits related to malting quality is of great commercial interest. In order to study the genetic basis of variation for malting quality traits in UK cultivars, a historical set of trial data was collated from national and recommended list trials from the period 1988 to 2016. This data was used to estimate variety means for 20 quality related traits in 451 spring barley cultivars, and 407 winter cultivars. Genotypes for these cultivars were generated using iSelect 9k and 50k genotyping platforms, and a genome wide association scan performed to identify malting quality quantitative trait loci (QTL). 24 QTL were identified in spring barley cultivars, and 2 from the winter set. A number of these correspond to known malting quality related genes but the remainder represents novel genetic variation that is accessible to breeders for the genetic improvement of new cultivars.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Xelect Ltd, Horizon House, Abbey Walk, St Andrews, Fife, KY16 9LB, Scotland, UK
| | - Luke Ramsay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Hazel Bull
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd., Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - J Stuart Swanston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Paul D Shaw
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Joanne R Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | |
Collapse
|
3
|
Assessing the impact of corn variety and Texas terroir on flavor and alcohol yield in new-make bourbon whiskey. PLoS One 2019; 14:e0220787. [PMID: 31393929 PMCID: PMC6687180 DOI: 10.1371/journal.pone.0220787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
The whiskey industry is dominated by whiskey styles with recipes that contain corn as the primary grain. However, little research has been conducted to investigate whiskey specific distinctions arising from different corn varieties and growing environments (i.e. terroir). Further, no studies have investigated the aroma or flavor impacts of different varieties and terroirs. Here, three different commodity yellow dent hybrid corn varieties were grown on different farms in Texas, spanning from the Texas Panhandle to the Mexico-United States border. Using novel small-batch mashing techniques, a newly developed new-make (i.e. unaged whiskey,immediate by-product of distillation) bourbon sensory lexicon, a trained sensory panel, high-performance liquid chromatography, and gas chromatography-mass spectrometry/olfactometry (GC-MS/O), we report for the first time a method for evaluating sample effects on alcohol yield and flavor in new-make bourbon whiskey. We discover that variety, terroir and their interactions, previously ignored, can substantially affect valuable sensory aspects of whiskey, suggesting the importance of scientifically evaluating corn genetics and agronomy for developing better whiskey. Excitingly, our data suggest milled corn with higher levels of benzadehyde, readily measured by GC-MS/O, correlates with improved sensory aspects of distillate, which must be expensively evaluated using a trained human sensory panel.
Collapse
|
4
|
Ehlert M, Jagd LM, Braumann I, Dockter C, Crocoll C, Motawia MS, Møller BL, Lyngkjær MF. Deletion of biosynthetic genes, specific SNP patterns and differences in transcript accumulation cause variation in hydroxynitrile glucoside content in barley cultivars. Sci Rep 2019; 9:5730. [PMID: 30952890 PMCID: PMC6450869 DOI: 10.1038/s41598-019-41884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Abstract
Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides, potentially involved in alleviating pathogen and environmental stresses. These compounds include the cyanogenic glucoside epiheterodendrin. The biosynthetic genes are clustered. Total hydroxynitrile glucoside contents were previously shown to vary from zero to more than 10,000 nmoles g-1 in different barley lines. To elucidate the cause of this variation, the biosynthetic genes from the high-level producer cv. Mentor, the medium-level producer cv. Pallas, and the zero-level producer cv. Emir were investigated. In cv. Emir, a major deletion in the genome spanning most of the hydroxynitrile glucoside biosynthetic gene cluster was identified and explains the complete absence of hydroxynitrile glucosides in this cultivar. The transcript levels of the biosynthetic genes were significantly higher in the high-level producer cv. Mentor compared to the medium-level producer cv. Pallas, indicating transcriptional regulation as a contributor to the variation in hydroxynitrile glucoside levels. A correlation between distinct single nucleotide polymorphism (SNP) patterns in the biosynthetic gene cluster and the hydroxynitrile glucoside levels in 227 barley lines was identified. It is remarkable that in spite of the demonstrated presence of a multitude of SNPs and differences in transcript levels, the ratio between the five hydroxynitrile glucosides is maintained across all the analysed barley lines. This implies the involvement of a stably assembled multienzyme complex.
Collapse
Affiliation(s)
- Marcus Ehlert
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Lea Møller Jagd
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Michael Foged Lyngkjær
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
5
|
Bathgate GN. A review of malting and malt processing for whisky distillation. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Balcerek M, Pielech-Przybylska K, Strąk E, Patelski P, Dziekońska U. Comparison of fermentation results and quality of the agricultural distillates obtained by application of commercial amylolytic preparations and cereal malts. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|