1
|
Li Z, Yan X, Zou S, Ji C, Dong L, Zhang S, Liang H, Lin X. Analysis of Fungal Diversity, Physicochemical Properties and Volatile Organic Compounds of Strong-Flavor Daqu from Seven Different Areas. Foods 2024; 13:1263. [PMID: 38672935 PMCID: PMC11049157 DOI: 10.3390/foods13081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Strong-flavor Daqu, as a fermentation agent, plays a significant role in shaping the quality of strong-flavor baijius, and fungal species in Daqu are important factors affecting the quality of Daqu. Therefore, we selected strong-flavor Daqu from seven different origins to study the fungal composition and the effects of the fungal composition on the physicochemical properties and volatile organic compounds (VOCs). It was found that the fungal composition influences the physicochemical properties of Daqu. Specifically, there was a positive link between Rhizomucor, Rhizopus, Thermomyces, and liquefying activity and a positive correlation between Aspergillus and fermenting activity. Furthermore, the relationships between esterifying activity and Thermomyces, Rhizomucor, Aspergillus, Pichia, and Saccharomycopsis were found to be positive. The VOCs in Daqu were affected by Aspergillus, Issatchenkia, Pichia, and Thermoascus. Issatchenkia was significantly positively correlated with benzeneethanol as well as Aspergillus and pentadecanoic acid ethyl ester, ethyl myristate. Pichia and Thermoascus were significantly negatively correlated with benzaldehyde and 2-furaldehyde. This study deepens our understanding of the relationship between VOCs, the physicochemical properties with microbial communities, and reference significance for the production of better-quality strong-flavor Daqu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinping Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Z.L.); (X.Y.); (S.Z.); (C.J.); (L.D.); (S.Z.); (H.L.)
| |
Collapse
|
2
|
Tong W, Wang S, Yang Y, Huang Z, Li Y, Huang D, Luo H, Zhao L. Insights into the Dynamic Succession of Microbial Community and Related Factors of Vanillin Content Change Based by High-Throughput Sequencing and Daqu Quality Drivers. Foods 2023; 12:4312. [PMID: 38231778 DOI: 10.3390/foods12234312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Daqu is an important saccharifying starter in the fermentation of Nongxiangxing Baijiu in China. Vanillin is a health and flavor factor in Baijiu. However, only a few research studies on the vanillin content of Daqu are currently not systematic. In order to investigate the metabolic mechanism of vanillin in the fermentation process of Daqu, we analyzed the changes in microorganisms, influencing factors, and enzymes related to vanillin in Daqu. This research found that there were differences between bacterial and fungal genera in each sample, and the abundance of bacteria was greater than that of fungi. Among the microbial genera, Klebsiella, Escherichia, Acinetobacter, Saccharopolyspora, Aerococcus, and Puccinia were positively correlated with vanillin. Meanwhile, we also found that moisture and reducing sugar were the main physicochemical factors affecting the formation of vanillin. The functional annotation results indicate that carbohydrate metabolism and energy metabolism were important microbial metabolic pathways that impacted vanillin production in solid-state fermentation. The feruloyl-CoA hydratase/lyase (EC 4.1.2.61) and acylamidase (EC 3.5.1.4) were positively correlated with vanillin content (p ≤ 0.05) and promote the increase in vanillin content. These findings contribute to furthering our understanding of the functional microorganisms, physicochemical factors, and enzymes related to the change in vanillin content during the fermentation of Daqu and can help to further explore the flavor substances in Baijiu fermentation in the future.
Collapse
Affiliation(s)
- Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Shuqin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Zhijiu Huang
- Sichuan Luzhou Laojiao Co., Ltd., Luzhou 646000, China
- Zuiqingfeng Distillery Co., Ltd., Luzhou 646000, China
| | - Yiyun Li
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Dan Huang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Liming Zhao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200000, China
| |
Collapse
|
3
|
Huang P, Jin Y, Liu M, Peng L, Yang G, Luo Z, Jiang D, Zhao J, Zhou R, Wu C. Exploring the Successions in Microbial Community and Flavor of Daqu during Fermentation Produced by Different Pressing Patterns. Foods 2023; 12:2603. [PMID: 37444341 DOI: 10.3390/foods12132603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Daqu can be divided into artificially pressed daqu (A-Daqu) and mechanically pressed daqu (M-Daqu) based on pressing patterns. Here, we compared the discrepancies in physicochemical properties, volatile metabolites, and microbiota features between A-Daqu and M-Daqu during fermentation and further investigated the factors causing those differences. A-Daqu microbiota was characterized by six genera (e.g., Bacillus and Thermoactinomyces), while five genera (e.g., Bacillus and Thermomyces) dominated in M-Daqu. The flavor compounds analysis revealed that no obvious difference was observed in the type of esters between the two types of daqu, and M-Daqu was enriched with more alcohols. The factors related to differences between the two types of daqu were five genera (e.g., Hyphopichia). The functional prediction of microbial communities revealed that the functional discrepancies between the two types of daqu were mainly related to ethanol metabolism and 2,3-butanediol metabolism. This study provided a theoretical basis for understanding the heterogeneity of daqu due to the different pressing patterns.
Collapse
Affiliation(s)
- Ping Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | | | - Liqun Peng
- Sichuan Yibin Xufu Liquor Co., Ltd., Yibin 644000, China
| | | | - Zhi Luo
- Sichuan Yibin Xufu Liquor Co., Ltd., Yibin 644000, China
| | - Dongcai Jiang
- Sichuan Yibin Xufu Liquor Co., Ltd., Yibin 644000, China
| | | | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Zhao J, Yang Y, Teng M, Zheng J, Wang B, Mallawaarachchi V, Lin Y, Fang Z, Shen C, Yu S, Yang F, Qiao L, Wang L. Metaproteomics profiling of the microbial communities in fermentation starters ( Daqu) during multi-round production of Chinese liquor. Front Nutr 2023; 10:1139836. [PMID: 37324728 PMCID: PMC10267310 DOI: 10.3389/fnut.2023.1139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The special flavor and fragrance of Chinese liquor are closely related to microorganisms in the fermentation starter Daqu. The changes of microbial community can affect the stability of liquor yield and quality. Methods In this study, we used data-independent acquisition mass spectrometry (DIA-MS) for cohort study of the microbial communities of a total of 42 Daqu samples in six production cycles at different times of a year. The DIA MS data were searched against a protein database constructed by metagenomic sequencing. Results The microbial composition and its changes across production cycles were revealed. Functional analysis of the differential proteins was carried out and the metabolic pathways related to the differential proteins were explored. These metabolic pathways were related to the saccharification process in liquor fermentation and the synthesis of secondary metabolites to form the unique flavor and aroma in the Chinese liquor. Discussion We expect that the metaproteome profiling of Daqu from different production cycles will serve as a guide for the control of fermentation process of Chinese liquor in the future.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Kweichow Moutai Group, Renhuai, Guizhou, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | | | | | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
- Flinders Accelerator for Microbiome Exploration, Flinders University, Bedford Park, SA, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| |
Collapse
|
5
|
Zhang Y, Shen Y, Niu J, Ding F, Ren Y, Chen X, Han BZ. Bacteria-induced amino acid metabolism involved in appearance characteristics of high-temperature Daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:243-254. [PMID: 35857424 DOI: 10.1002/jsfa.12136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Significant changes occurd in Daqu bricks on the 15th day of incubation, and brick color (yellow, brown, or dark) is generally used as a standard for quality evaluation by experienced workers. This study aimed to explore the basis behind the phenomenon through multi-omics studies. The physicochemical properties of different high-temperature Daqu were compared. Furthermore, PacBio sequencing and the ultra-high-performance liquid chromatographic-Q-exactive-mass spectrometric approach were employed to analyze the differences in the microbiome and metabolome among different Daqu samples. RESULTS Bacillus was the biomarker of yellow Daqu, Thermoactinomyces and Thermoascus were the key genera in brown Daqu, and Burkholderiales, Sphingomonas, and Ralstonia were biomarkers in dark Daqu. The physicochemical characteristics (especially the color values) of different high-temperature Daqu showed strong correlations with the bacterial alpha diversity and the relative abundance of dominant bacterial genera. Amino acid metabolism pathways including tryptophan metabolism, β-alanine metabolism, and arginine biosynthesis were the key factors resulting in the characteristic differences where Bacillus, Burkholderia, Ralstonia, and Sphingomonas were pivotal bacterial genera. The relative abundance of Bacillus had a positive correlation with the content of 3-hydroxykynurenamine, l-glutamic acid, and pantothenic acid, while it showed a negative correlation with indoleacetic acid, l-tryptophan, N-acetylserotonin, l-histidine, l-aspartic acid, phosphatidylserine, 5-methoxyindoleacetate, and L-serine. Burkholderia, Ralstonia, and Sphingomonas had the opposite effects. CONCLUSION Microbes play different roles in amino acid metabolism pathways, producing different metabolites, contributing to the differences in Daqu appearance and quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yi Shen
- Sichuan Langjiu Co. Ltd, Luzhou, China
| | - Jiao Niu
- Sichuan Langjiu Co. Ltd, Luzhou, China
| | - Fang Ding
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhao J, Yang Y, Chen L, Zheng J, Lv X, Li D, Fang Z, Shen C, Mallawaarachchi V, Lin Y, Yu S, Yang F, Wang L, Qiao L. Quantitative metaproteomics reveals composition and metabolism characteristics of microbial communities in Chinese liquor fermentation starters. Front Microbiol 2023; 13:1098268. [PMID: 36699582 PMCID: PMC9868298 DOI: 10.3389/fmicb.2022.1098268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Daqu, the Chinese liquor fermentation starter, contains complex microbial communities that are important for the yield, quality, and unique flavor of produced liquor. However, the composition and metabolism of microbial communities in the different types of high-temperature Daqu (i.e., white, yellow, and black Daqu) have not been well understood. Methods Herein, we used quantitative metaproteomics based on data-independent acquisition (DIA) mass spectrometry to analyze a total of 90 samples of white, yellow, and black Daqu collected in spring, summer, and autumn, revealing the taxonomic and metabolic profiles of different types of Daqu across seasons. Results Taxonomic composition differences were explored across types of Daqu and seasons, where the under-fermented white Daqu showed the higher microbial diversity and seasonal stability. It was demonstrated that yellow Daqu had higher abundance of saccharifying enzymes for raw material degradation. In addition, considerable seasonal variation of microbial protein abundance was discovered in the over-fermented black Daqu, suggesting elevated carbohydrate and amino acid metabolism in autumn black Daqu. Discussion We expect that this study will facilitate the understanding of the key microbes and their metabolism in the traditional fermentation process of Chinese liquor production.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | | | - Jianxujie Zheng
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xibin Lv
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Dandan Li
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Analysis of the Influence of Microbial Community Structure on Flavor Composition of Jiang-Flavor Liquor in Different Batches of Pre-Pit Fermented Grains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the effects of microbial community changes on the key flavor substances in base Baijiu, this study analyzed the microbiome of the pre-pit fermentation grains using high-throughput sequencing technology and determined the flavor substances of the base Baijiu by GC-FID. The results showed the microbial community changed dynamically between the different rounds, as well as bacteria and fungi displayed different succession patterns. Next, the variations of skeletal flavor substances in the base Baijiu were analyzed by multiomics, and it was found that alcohols, acids, and esters were the most abundant, accounting for 88.16–98.87% of the total flavor substances, and decreased with the increase of the rounds. By calculating the Spearman coefficient, it was found that microorganisms such as Acinetobacter, Oceanobacillus, Saccharomyces, and Byssochlamys were significantly correlated with the n-Propano and 2,3-Butanediol and other components in the base Baijiu. Finally, 15 flavor substances such as Acetaldehyde, Propionaldehyde, and Isobutyraldehyde were identified as key substances by OAV analysis. This study is the first to reveal the potential association between the microbial community of pre-pit fermentation grains and flavor of base Baijiu and has the benefit of improving the quality of base Baijiu.
Collapse
|
8
|
Chen C, Yang H, Liu J, Luo H, Zou W. Systematic Review of Actinomycetes in the Baijiu Fermentation Microbiome. Foods 2022; 11:3551. [PMID: 36429142 PMCID: PMC9689711 DOI: 10.3390/foods11223551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Actinomycetes (a group of filamentous bacteria) are the dominant microbial order in the Daqu (DQ) fermentation starter and in the pit mud (PM) of the Baijiu fermentation microbiome. Actinomycetes produce many of the key enzymes and flavor components, and supply important precursors, which have a major influence on its characteristic aroma components, to other microorganisms during fermentation. This paper reviews the current progress on actinomycete research related to Baijiu fermentation, including the isolation and identification, distribution, interspecies interactions, systems biology, and main metabolites. The main metabolites and applications of the actinomycetes during Baijiu fermentation are also discussed.
Collapse
Affiliation(s)
- Cong Chen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Anhui Linshui Liquor Co., Ltd., Lu’an 237471, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| |
Collapse
|
9
|
Shang C, Li Y, Zhang J, Gan S. Analysis of Bacterial Diversity in Different Types of Daqu and Fermented Grains From Danquan Distillery. Front Microbiol 2022; 13:883122. [PMID: 35865918 PMCID: PMC9295720 DOI: 10.3389/fmicb.2022.883122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities in high-temperature Daqu and fermented grains are important for brewing Jiang-flavor Baijiu such as Danquan Baijiu. Daqu is a saccharifying and fermenting agent, which has a significant impact on the flavor of Baijiu. However, bacterial communities in three different types of samples from the Danquan distillery (dqjq_ck, dqjqcp, and dqjp3) were still unclear, which limited further development of Danquan Baijiu. “dqjq_ck” and “dqjqcp” indicate high-temperature Daqu at days 45 and 135, respectively. “dqjp3” indicates fermented grains. In this study, the bacterial communities of three samples were analyzed by Illumina Miseq high-throughput sequencing. The bacterial communities of three samples primarily composed of thermophilic bacteria and bacteria with stress resistance. The most abundant species in dqjq_ck, dqjqcp, and dqjp3 were Comamonas, Bacillus, and unclassified Lactobacillales, respectively. The main bacteria included Bacillus, Comamonas, Myroides, Paenibacillus, Acetobacter, Kroppenstedtia, Staphylococcus, Saccharopolyspora, Planifilum, Lactobacillus, Acinetobacter, Oceanobacillus, Enterococcus, Thermoactinomyces, Lactococcus, Streptomyces, Saccharomonospora, Tepidimicrobium, Anaerosalibacter, unclassified_Lactobacillales, unclassified_Thermoactinomycetaceae_1, unclassified_Bacillaceae_2, unclassified_Bacillales, unclassified_Microbacteriaceae, unclassified_Rhodobacteraceae, unclassified_Actinopolysporineae, and unclassified_Flavobacteriaceae in three samples (percentage was more than 1% in one of three samples). In our study, the succession of microbiota in three samples representing three important stages of Danquan Baijiu brewing was revealed. This article lays a good foundation for understanding the fermentation mechanism and screening some excellent indigenous bacteria to improve the quality of Danquan Baijiu in future.
Collapse
Affiliation(s)
- Changhua Shang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Shang
| | - Yujia Li
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Jin Zhang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Shanling Gan
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| |
Collapse
|
10
|
Zhu Q, Chen L, Peng Z, Zhang Q, Huang W, Yang F, Du G, Zhang J, Wang L. Analysis of environmental driving factors on Core Functional Community during Daqu fermentation. Food Res Int 2022; 157:111286. [PMID: 35761594 DOI: 10.1016/j.foodres.2022.111286] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
Sauce-flavor Daqu determines the quality of Baijiu because its core functional community (CFC) can produce abundant enzymes and aroma. However, complex environmental factors make it difficult to accurately control the fermentation quality of Daqu. In this study, we constructed a functional gene database to identify CFC based on multi-omics technology and explore controllable environmental factors of CFC to improve the quality of Daqu. The results showed that the CFC is mainly composed of 7 bacterial and 4 fungal genera, including Kroppenstedtia, Thermoactinomyces, Bacillus, Acinetobacter, Brevibacterium, Saccharopolyspora, Ochrobactrum, Aspergillus, Byssochlamys, Thermoascus, and Thermomyces. Most of them are thermostable microorganisms that can provide the power of fermentation and saccharification (α-amylase, glucoamylase, and protease). In CFC, Acinetobacter and Saccharopolyspora were strongly positively correlated with typical flavor substances, while fungi were negatively correlated, particularly with furans. Therefore, the bacterial genera contributed more to the significant flavors. The CFC was significantly influenced by high temperature and total titrate acid based on RDA. In addition, high-temperature conditions were also strongly positively correlated with flavors that can be quickly produced at high temperatures, such as 2-Furancarboxaldehyde, 2-Furanmethanol, and Tetramethylpyrazine. As a controllable factor, the temperature can be adjusted to improve the quality of Daqu directionally, which will provide theoretical guidance for the production of high-quality Daqu.
Collapse
Affiliation(s)
- Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Liangqiang Chen
- Kweichow Moutai Distillery Co., Ltd., Renhuai, Guizhou 564501, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qiaoling Zhang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, Guizhou 564501, China
| | - Wanqiu Huang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, Guizhou 564501, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
11
|
Tu W, Cao X, Cheng J, Li L, Zhang T, Wu Q, Xiang P, Shen C, Li Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front Microbiol 2022; 13:919044. [PMID: 35783408 PMCID: PMC9245514 DOI: 10.3389/fmicb.2022.919044] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chinese Baijiu is one of the famous distilled liquor series with unique flavors in the world. Under the open environment, Chinese Baijiu was produced by two solid-state fermentation processes: jiuqu making and baijiu making. Chinese Baijiu can be divided into different types according to the production area, production process, starter type, and product flavor. Chinese Baijiu contains rich flavor components, such as esters and organic acids. The formation of these flavor substances is inseparable from the metabolism and interaction of different microorganisms, and thus, microorganisms play a leading role in the fermentation process of Chinese Baijiu. Bacteria, yeasts, and molds are the microorganisms involved in the brewing process of Chinese Baijiu, and they originate from various sources, such as the production environment, production workers, and jiuqu. This article reviews the typical flavor substances of different types of Chinese Baijiu, the types of microorganisms involved in the brewing process, and their functions. Methods that use microbial technology to enhance the flavor of baijiu, and for detecting flavor substances in baijiu were also introduced. This review systematically summarizes the role and application of Chinese Baijiu flavor components and microorganisms in baijiu brewing and provides data support for understanding Chinese Baijiu and further improving its quality.
Collapse
Affiliation(s)
- Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, China
| |
Collapse
|
12
|
Xue Y, Tang F, Cai W, Zhao X, Song W, Zhong J, Liu Z, Guo Z, Shan C. Bacterial Diversity, Organic Acid, and Flavor Analysis of Dacha and Ercha Fermented Grains of Fen Flavor Baijiu. Front Microbiol 2022; 12:769290. [PMID: 35058895 PMCID: PMC8765705 DOI: 10.3389/fmicb.2021.769290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Fen flavor Baijiu needs two rounds of fermentation, which will obtain Dacha after initial fermentation and Ercha after secondary fermentation. The quality of Baijiu is closely related to the microbes within fermented grains. However, the bacterial diversity in Dacha and Ercha fermented grains of Fen flavor Baijiu has not been reported. In the present study, the structure and diversity of bacteria communities within fermented grains of Fen flavor Baijiu were analyzed and evaluated using MiSeq platform's HTS with a sequencing target of the V3-V4 region of the 16S rRNA gene. Through the analysis of physical and chemical indexes and electronic senses, the relationship between bacterial flora, organic acid, taste, and aroma in fermented grains was clarified. The results indicated that Lactobacillus was the main bacteria in Dacha, and the mean relative content was 97.53%. The bacteria within Ercha samples were Pseudomonas and Bacillus, mean relative content was 37.16 and 28.02%, respectively. The diversity of bacterial communities in Ercha samples was significantly greater than that in Dacha samples. The correlation between Lactobacillus and organic acids, especially lactic acid, led to the difference between Dacha and Ercha organic acids, which also made the pH value of Dacha lower and the sour taste significantly higher than Ercha. Lactobacillus was significantly positively correlated with a variety of aromas, which made Dacha the response value of aromas higher. In addition, Bacillus had a significant positive correlation with bitterness and aromatic compounds, which led to a higher response value of bitterness in Ercha and made it present an aromatic aroma. This study provides an in-depth analysis of the difference between different stages of Fen flavor Baijiu, and theoretical support for the standard production and improvement in quality of Fen flavor Baijiu in the future.
Collapse
Affiliation(s)
- Yu'ang Xue
- School of Food Science, Shihezi University, Shihezi, China.,School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China.,Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, China
| | - Xinxin Zhao
- School of Food Science, Shihezi University, Shihezi, China
| | - Wen Song
- School of Food Science, Shihezi University, Shihezi, China
| | - Ji'an Zhong
- Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China.,Xiangyang Fen-Flavor Baijiu Biotechnology Key Laboratory, Xiangyang, China
| | - Zhongjun Liu
- Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China.,Xiangyang Fen-Flavor Baijiu Biotechnology Key Laboratory, Xiangyang, China
| | - Zhuang Guo
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China.,Xiangyang Liquor Brewing Biotechnology and Application Enterprise-University Joint Innovation Center, Xiangyang, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, China
| |
Collapse
|
13
|
CAO J, ZHENG Y, ZHAO T, MAO H, FANG S, CHEN M, LIU S. Changes in the microbial community structure during the digitally managed fermentation of medium-temperature Daqu. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.87122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jinghua CAO
- Huazhong Agricultural University, China; Hubei University of Technology, China
| | | | - Ting ZHAO
- Hubei University of Technology, China
| | - Hao MAO
- Hubei University of Technology, China
| | | | | | | |
Collapse
|
14
|
Cai W, Xue Y, Wang Y, Wang W, Shu N, Zhao H, Tang F, Yang X, Guo Z, Shan C. The Fungal Communities and Flavor Profiles in Different Types of High-Temperature Daqu as Revealed by High-Throughput Sequencing and Electronic Senses. Front Microbiol 2021; 12:784651. [PMID: 34925290 PMCID: PMC8674350 DOI: 10.3389/fmicb.2021.784651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 02/01/2023] Open
Abstract
Polymicrobial co-fermentation is among the distinct character of high-temperature Daqu. However, fungal communities in the three types of high-temperature Daqu, namely, white high-temperature Daqu, black high-temperature Daqu, and yellow high-temperature Daqu, are yet to be characterized. In this study, the fungal diversity, taste, and aroma profiles in the three types of high-temperature Daqu were investigated by Illumina MiSeq high-throughput sequencing, electronic tongue, and electronic nose, respectively. Ascomycota and Basidiomycota were detected as the absolute dominant fungal phylum in all types of high-temperature Daqu samples, whereas Thermomyces, Thermoascus, Aspergillus, Rasamsonia, Byssochlamys, and Trichomonascus were identified as the dominant fungal genera. The fungal communities of the three types of high-temperature Daqu differed significantly (p < 0.05), and Thermomyces, Thermoascus, and Monascus could serve as the biomarkers in white high-temperature Daqu, black high-temperature Daqu, and yellow high-temperature Daqu, respectively. The three types of high-temperature Daqu had an extremely significant difference (p < 0.01) in flavor: white high-temperature Daqu was characterized by sourness, bitterness, astringency, richness, methane, alcohols, ketones, nitrogen oxides, and sulfur organic compounds; black high-temperature Daqu was characterized by aftertaste-A, aftertaste-B, methane-aliph, hydrogen, and aromatic compounds; and yellow high-temperature Daqu was characterized by saltiness, umami, methane, alcohols, ketones, nitrogen oxides, and sulfur organic compounds. The fungal communities in the three types of high-temperature Daqu were significantly correlated with taste but not with aroma, and the aroma of high-temperature Daqu was mainly influenced by the dominant fungal genera including Trichomonascus, Aspergillus, Thermoascus, and Thermomyces. The result of the present study enriched and refined our knowledge of high-temperature Daqu, which had positive implications for the development of traditional brewing technique.
Collapse
Affiliation(s)
- Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, China
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Yu’ang Xue
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| | - Wenping Wang
- Xiangyang Maotai-Flavor Baijiu Solid-State Fermentation Enterprise-University Joint Innovation Center, Xiangyang, China
| | - Na Shu
- Xiangyang Maotai-Flavor Baijiu Solid-State Fermentation Enterprise-University Joint Innovation Center, Xiangyang, China
| | - Huijun Zhao
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Xinquan Yang
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Fu G, Deng M, Chen K, Chen Y, Cai W, Wu C, Liu C, Wu S, Wan Y. Peak-temperature effects of starter culture (Daqu) on microbial community succession and volatile substances in solid-state fermentation (Jiupei) during traditional Chinese special-flavour Baijiu production. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Wang G, Song X, Zhu L, Li Q, Zheng F, Geng X, Li L, Wu J, Li H, Sun B. A flavoromics strategy for the differentiation of different types of Baijiu according to the non-volatile organic acids. Food Chem 2021; 374:131641. [PMID: 34836669 DOI: 10.1016/j.foodchem.2021.131641] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023]
Abstract
Non-volatile organic acids (NVOAs) in 12 main flavor types of Baijiu were analyzed by a derivatization method combined with GC-MS and 38 NVOAs were quantified. Meanwhile, a flavoromics strategy based on the contents of NVOAs in the 12 flavor types of Baijiu was successfully used to the differentiation of Baijiu. PLS-DA models (explained variation, predictive capability) were used to consider different categories: fermentation process (0.931, 0.870), starter (0.921, 0.834), fermentation container (0.899, 0.810) and raw material (0.951, 0.909). Based on the selected categories, suitable separations were achieved, and the classification ability of these models were nearly 100%. As a result, the model demonstrated its ability to perfectly distinguish different types of Baijiu. Seventeen potential markers were identified by variable importance in projection method and were further processed using heatmap and hierarchical cluster analysis, indicating that the NVOAs had great discrimination power to differentiate Baijiu.
Collapse
Affiliation(s)
- Guangnan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebo Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaojie Geng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianghao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Wang L, Huang Y, Hu X, Li Y. The impact of environmental factors on the environmental bacterial diversity and composition in the Jiang-flavoured Baijiu production region. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Wang H, Huang Y, Huang Y. Microbiome diversity and evolution in stacking fermentation during different rounds of Jiang-flavoured Baijiu brewing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Microbial composition and dynamic succession during the Daqu production process of Northern Jiang-flavored liquor in China. 3 Biotech 2021; 11:224. [PMID: 33968569 DOI: 10.1007/s13205-021-02779-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
The microbial community structure and succession regularity of six key periods during high-temperature Daqu production were revealed using high-throughput sequencing to explore the factors affecting the flavor formation of Northern Jiang-flavored Baijiu technology. The results showed that among the six Daqu samples, the bacteria mainly included Firmicutes, Actinobacteriota, and Proteobacteria, of which Proteobacteria was the most dominant. The primary fungus was Ascomycota. At the genus level, the primary bacterial groups were Lactobacillus, Weissella, Bacillus, Delftia, Achromobacter, Saccharopolyspora, Thermoactinomyces, Scopulibacillus, Pseudomonas, and Stenotrophomonas. The main fungal groups in the Daqu were Wickerhamomyces, Saccharomycopsis, Thermoascus, and Thermomyces. During the initial stage of Daqu production, the dominant bacteria were Lactobacillus (20.07%) and Weissella (48.30%). As the fermentation temperature of the Daqu increased, Achromobacter, Stenotrophomonas, and Delftia became the dominant bacteria during the first Daqu flipping period, the second Daqu flipping period, and the dry-fire period. During these three periods, many bacteria were eliminated, decreasing the bacterial diversity, while a decline in temperature was evident during the Daqu exit period. After adapting to the high-temperature environment, the accumulation of Saccharopolyspora (22.07%), Thermoactinomyces (16.73%), Scopulibacillus (27.13%), Kroppenstedtia (9.03%), and Bacillus (6.97%) increased the bacterial diversity during the Daqu exit period. Wickerhamomyces (83.47%) represented the main dominant fungus during the initial production stage but were eliminated with increased temperature. Furthermore, a higher temperature increased the abundance of Saccharomycopsis and Thermoascus, while Thermomyces gradually accumulated in the D, E, and F samples. Thermomyces (79.90%) and Thermoascus (13.83%) became the dominant fungi during the Daqu exit period. In this study, high-throughput sequencing technology was used to reveal the microbial diversity during the high-temperature Daqu production process of Northern Jiang-flavored Baijiu. This provided a scientific basis for improving the production process of this product in the future. Therefore, understanding the formation of the flavor substances and the related microorganisms in Northern Jiang-flavored Baijiu can provide guidance for using them to manipulate the preparation process while implementing microbial control and improving the production procedures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02779-8.
Collapse
|
20
|
Metagenomics unveils microbial roles involved in metabolic network of flavor development in medium-temperature daqu starter. Food Res Int 2021; 140:110037. [PMID: 33648263 DOI: 10.1016/j.foodres.2020.110037] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
As a widely used Asian starter culture, the quality of daqu can significantly affect the organoleptic characteristics of the final products, yet the microbial metabolic network involved in flavor development remains unclear. This study aims to investigate that network based on the dynamics of physicochemical properties, microbial community, and volatile compounds in medium-temperature daqu (MT-daqu) during spontaneous fermentation. Analyses using the metagenomic data set facilitated the gene repertoire overview of this ecosystem, indicating that Lactobacillales (mainly Weissella, Lactobacillus, and Pediococcus), Mucorales (mainly Lichtheimia), and Eurotiales (mainly Aspergillus, Rasamsonia and Byssochlamys) were the potential predominant populations successively responsible for the production of lytic enzymes and flavor precursors/compounds in MT-daqu. Flavor-relevant pathways were found to exist in multiple species, but only bacteria showed the potential to participate in butane-2,3-diol (e.g. Weissella, Lactobacillus, and Staphylococcus) and butanoate (Thermoactinomyces) metabolism, and only fungi were potentially involved in biosynthesis of guaiacol (Byssochlamys) and 4-vinylguaiacol (Aspergillus). Furthermore, a combined analysis revealed that the acidic thermal environment present in early phases was mainly due to the catabolic activities of Lactobacillales and Lichtheimia, which could contribute to the effective self-domestication of microbiota. The study helps elucidate the different metabolic roles of microorganisms and disclose the formation mechanism of daqu's partial functions, namely providing various aromatic substances/precursors and enzymes.
Collapse
|
21
|
Wang Y, Cai W, Wang W, Shu N, Zhang Z, Hou Q, Shan C, Guo Z. Analysis of microbial diversity and functional differences in different types of high-temperature Daqu. Food Sci Nutr 2021; 9:1003-1016. [PMID: 33598183 PMCID: PMC7866569 DOI: 10.1002/fsn3.2068] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacterial communities that enrich in high-temperature Daqu are important for the Chinese maotai-flavor liquor brewing process. However, the bacterial communities in three different types of high-temperature Daqu (white Daqu, black Daqu, and yellow Daqu) are still undercharacterized. In this study, the bacterial diversity of three different types of high-temperature Daqu was investigated using Illumina MiSeq high-throughput sequencing. The bacterial community of high-temperature Daqu is mainly composed of thermophilic bacteria, and seven bacterial phyla along with 262 bacterial genera were identified in all 30 high-temperature Daqu samples. Firmicutes, Actinobacteria, Proteobacteria, and Acidobacteria were the dominant bacterial phyla in high-temperature Daqu samples, while Thermoactinomyces, Staphylococcus, Lentibacillus, Bacillus, Kroppenstedtia, Saccharopolyspora, Streptomyces, and Brevibacterium were the dominant bacterial genera. The bacterial community structure of three different types of high-temperature Daqu was significantly different (p < .05). In addition, the results of microbiome phenotype prediction by BugBase and bacterial functional potential prediction using PICRUSt show that bacteria from different types of high-temperature Daqu have similar functions as well as phenotypes, and bacteria in high-temperature Daqu have vigorous metabolism in the transport and decomposition of amino acids and carbohydrates. These results offer a reference for the comprehensive understanding of bacterial diversity of high-temperature Daqu.
Collapse
Affiliation(s)
- Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| | - Wenchao Cai
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
- School of Food ScienceShihezi UniversityShiheziChina
| | - Wenping Wang
- Hubei Yaozhihe Chuwengquan Liquor Industry Co., Ltd.XiangyangChina
| | - Na Shu
- Hubei Yaozhihe Chuwengquan Liquor Industry Co., Ltd.XiangyangChina
| | - Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| | - Chunhui Shan
- School of Food ScienceShihezi UniversityShiheziChina
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| |
Collapse
|
22
|
Wu X, Jing R, Chen W, Geng X, Li M, Yang F, Yan Y, Liu Y. High-throughput sequencing of the microbial diversity of roasted-sesame-like flavored Daqu with different characteristics. 3 Biotech 2020; 10:502. [PMID: 33163321 PMCID: PMC7606403 DOI: 10.1007/s13205-020-02500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this experiment was to analyze the microbial community diversity in three Daqu samples displaying different characteristics in the same Daqu fermentation chamber. A high throughput sequencing technique was used to detect the microbial abundance and diversity in these Daqu samples. Of the three samples, the microbial diversity in the Black sample (sample B) was significantly higher than in the other two. At the genus level, Saccharopolyspora, Bacillus, Lentibacillus, Staphylococcus, Kroppenstedtia, and Thermoactinomyces were the primary bacterial groups in the sesame-flavored liquor, while Thermomyces, Thermoascus, and Aspergillus represented the main fungal groups. In sample B, the dominant bacteria were Thermoactinomyces, Saccharopolyspora, and Pseudomonas. In the White sample (sample W), Thermoactinomyces was the most abundant, followed by Saccharopolyspora and Lentibacillus. Staphylococcus dominated in the Yellow sample (sample Y), followed by Bacillus and Kroppenstedtia. Regarding the fungi in the three samples, Thermomyces accounted for 93.70% in sample B, and Aspergillus dominated in sample W, while the Thermoascus and Aspergillus content were similar in the sample Y. This study examined the microbial diversity in liquor Daqu with different sesame flavors, providing a foundation for microbial regulation, while investigating the relationship between flavored liquor compounds and microorganisms.
Collapse
Affiliation(s)
- Xianyu Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Ruixue Jing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Wenhao Chen
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, 644000 Sichuan China
| | - Xiaojie Geng
- China National Research Institute of Food and Fermentation Industries, Beijing, 100015 China
| | - Miao Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Fuzhen Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Yinzhuo Yan
- China National Research Institute of Food and Fermentation Industries, Beijing, 100015 China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| |
Collapse
|
23
|
Zuo Q, Huang Y, MinGuo. Evaluation of bacterial diversity during fermentation process: a comparison between handmade and machine-made high-temperature Daqu of Maotai-flavor liquor. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01598-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Purpose
High-temperature Daqu is a traditional fermentation starter that is used for Chinese Maotai-flavor Baijiu production. Although the bacteria in high-temperature Daqu are known to be responsible for developing the quality and flavor of Baijiu during the fermentation process, there is little information on the properties of the bacteria during the fermentation of high-temperature Daqu, especially machine-made high-temperature Daqu. This has limited the development of the Maotai-flavor Baijiu industry, particularly with regard to the mechanized production of Maotai-flavor Baijiu.
Methods
Illumina MiSeq high-throughput sequencing was applied to study bacterial compositions during the fermentation of handmade and machine-made high temperatures.
Results
The results show that bacterial diversity in machine-made Daqu was similar but higher than that in handmade Daqu at the end of fermentation, and there was no significant difference between the methods with regard to the dominant genera and their dynamic changes during fermentation. Rhizobium, Bacillus, Thermoactinomyces, Weissella, Lactobacillus, and Saccharopolyspora were the dominant genera during the fermentation of both Daqus, although the relative abundance of these dominant genera differed between the two methods. Interestingly, the machine-made Daqu contained a higher relative abundance of Bacillus than handmade Daqu at all fermentation times. Bacillus is the most important functional bacteria in the fermentation of Maotai-flavor Baijiu, suggesting that mechanical-molding methods could be applied to industrial Maotai-flavor Daqu production.
Conclusion
These results suggest that mechanical-molding methods could be applied to industrial Maotai-flavor Daqu production, which could be helpful for industrial Maotai-flavor Baijiu production and the development of fermentation technology.
Collapse
|
24
|
Zhang W, Li J, Rao Z, Si G, Zhang X, Gao C, Ye M, Zhou P. Sesame flavour baijiu: a review. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wenqing Zhang
- Engineering Research Centre of Bioprocess, School of Food and Biological Engineering; Hefei University of Technology; 230009 Hefei Anhui China
| | - Jinglei Li
- Engineering Research Centre of Bioprocess, School of Food and Biological Engineering; Hefei University of Technology; 230009 Hefei Anhui China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 214122 Wuxi Jiangsu China
| | - Guanru Si
- Research Institute of Jiangnan Small Pit Brewing Technology; 242000, Xuanjiu Xuancheng Anhui China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 214122 Wuxi Jiangsu China
| | - Chuanqiang Gao
- Research Institute of Jiangnan Small Pit Brewing Technology; 242000, Xuanjiu Xuancheng Anhui China
| | - Ming Ye
- Engineering Research Centre of Bioprocess, School of Food and Biological Engineering; Hefei University of Technology; 230009 Hefei Anhui China
| | - Ping Zhou
- Research Institute of Jiangnan Small Pit Brewing Technology; 242000, Xuanjiu Xuancheng Anhui China
| |
Collapse
|
25
|
Xie M, Lv F, Ma G, Farooq A, Li H, Du Y, Liu Y. High throughput sequencing of the bacterial composition and dynamic succession in Daqu for Chinese sesame flavour liquor. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mowen Xie
- University of Science and Technology Beijing; Beijing 100083 China
| | - Fuxia Lv
- University of Science and Technology Beijing; Beijing 100083 China
| | - Guoxing Ma
- University of Science and Technology Beijing; Beijing 100083 China
| | - Asim Farooq
- University of Science and Technology Beijing; Beijing 100083 China
| | - Hehe Li
- Beijing Laboratory of Food Quality and Safety, School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Yan Du
- University of Science and Technology Beijing; Beijing 100083 China
| | - Yang Liu
- University of Science and Technology Beijing; Beijing 100083 China
| |
Collapse
|
26
|
Fan G, Du Y, Fu Z, Chen M, Wang Z, Liu P, Li X. Characterisation of physicochemical properties, flavour components and microbial community in Chinese Guojing roasted sesame-like flavour Daqu. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology & Business University; Beijing 100048 China
| | - Yihua Du
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Zhilei Fu
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Min Chen
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Zhou Wang
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Pengxiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology & Business University; Beijing 100048 China
| |
Collapse
|
27
|
Du H, Wang X, Zhang Y, Xu Y. Exploring the impacts of raw materials and environments on the microbiota in Chinese Daqu starter. Int J Food Microbiol 2019; 297:32-40. [DOI: 10.1016/j.ijfoodmicro.2019.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
|
28
|
Tang H, Liang H, Song J, Lin W, Luo L. Comparison of microbial community and metabolites in spontaneous fermentation of two types Daqu starter for traditional Chinese vinegar production. J Biosci Bioeng 2019; 128:307-315. [PMID: 31023532 DOI: 10.1016/j.jbiosc.2019.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 01/18/2023]
Abstract
Daqu starter, an important saccharifying and fermenting agent for the brewing process of traditional vinegar, is manufactured by spontaneous solid-state fermentation which routinely undergoes low or medium incubation temperature. Previous studies have demonstrated that the temperature plays a pivotal role in Daqu quality. Hence, to explore the feasibility of high temperature fermentation applied in the vinegar Daqu brewing and provide guidelines of controlling environmental parameters in traditional vinegar industries, the microbial community and metabolites of vinegar Daqu during medium-temperature and high-temperature fermentation processes (namely, MTFP and HTFP) were compared. The results indicated that the glucoamylase activity, amylase activity and microbial community showed no significant difference in the end of two batches (P > 0.05). Enterobacteriales, Lactobacillales, Bacillales, Saccharomycetales and Mucorales were the dominant orders during MTFP and HTFP. Redundancy analysis revealed that incubation temperature showed positive correlation with the microbial composition from days 3-14 of the fermentation process and was positively associated with the predominant phylotypes of Bacillales, Mucorales, Xanthomonadales and Rickettsiales. The acidity and moisture showed major correlations with microbial composition on day 1 of MTFP and were positively related with the predominant phylotypes of Mucorales and Lactobacillales at the order level. Moreover, higher relative contents of all volatiles were shown in the end of HTFP (13.91 mg/100 g Daqu) compared to MTFP (10.01 mg/100 g Daqu). This work illustrates high temperature (approximately 60°C) fermentation is promising to improve the vinegar Daqu flavor and shall likely contribute to preferably make traditional Daqu by modulating steerable environmental parameters.
Collapse
Affiliation(s)
- Hanlan Tang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hebin Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiankun Song
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Weifeng Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lixin Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
29
|
Yun J, Zhao F, Zhang W, Yan H, Zhao F, Ai D. Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Wang B, Wu Q, Xu Y, Sun B. Specific Volumetric Weight-Driven Shift in Microbiota Compositions With Saccharifying Activity Change in Starter for Chinese Baijiu Fermentation. Front Microbiol 2018; 9:2349. [PMID: 30323805 PMCID: PMC6172349 DOI: 10.3389/fmicb.2018.02349] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023] Open
Abstract
Chinese starter Jiuqu, traditionally produced by spontaneous fermentation and always squeezed into bricks, serves as a vital saccharifying agent for simultaneous saccharification and fermentation of Chinese Baijiu. It is important to reveal the key saccharifying microbiota and the driving force to improve the quality of Jiuqu. Here we studied the compositions of the microbiota by high-throughput amplicons sequencing analysis in Jiuqu, and revealed eight bacterial and seven fungal genera as the dominant community members. Among them, Lactobacillus, Aspergillus, Pichia, Saccharomyces, Rhizopus were the main contributors of proteins by metaproteomics analysis. Whereas, only Lactobacillus, Pichia, Rhizopus appeared as key actors for saccharification by secreting three glycosidases and two glycosyltransferases, and it indicated they were the key saccharifying microbiota in Jiuqu. Especially, Rhizopus secreted the most abundant glucoamylase. Interestingly, these three active genera significantly decreased and the key saccharifying enzymes were down-expressed, when Jiuqu was produced in diffused shape with a low volumetric weight. Rhizopus microsporus, the main producer of glucoamylase, was positively correlated with volumetric weight of Jiuqu. It indicated volumetric weight was the major driving force of the key saccharifying microbiota in Jiuqu. This work provides deep insights of key saccharifying microbiota, and indicates the main driving force for the key microbe. Furthermore, this finding can contribute to the improvement of saccharifying agent for food fermentation.
Collapse
Affiliation(s)
- Bowen Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Suqian Industrial Technology Research Institute of Jiangnan university, Jiangnan University, Wuxi, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Qun Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Suqian Industrial Technology Research Institute of Jiangnan university, Jiangnan University, Wuxi, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Suqian Industrial Technology Research Institute of Jiangnan university, Jiangnan University, Wuxi, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
31
|
|
32
|
Wu H, Zhang S, Ma Y, Zhou J, Luo H, Yang J. Comparison of microbial communities in the fermentation starter used to brew Xiaoqu liquor. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hechuan Wu
- Sichuan University of Science and Engineering; 180 Xueyuanjie, Huixinglu Zigong Sichuan 643000 China
- Sichuan Academy of Atomic Energy; Chengdu 610000 China
| | - Suyi Zhang
- Luzhou Laojiao Co.; Laojiaoguangchang, Nanguanglu Luzhou Sichuan 646000 China
| | - Yingying Ma
- Sichuan University of Science and Engineering; 180 Xueyuanjie, Huixinglu Zigong Sichuan 643000 China
| | - Jian Zhou
- Sichuan University of Science and Engineering; 180 Xueyuanjie, Huixinglu Zigong Sichuan 643000 China
| | - Huibo Luo
- Sichuan University of Science and Engineering; 180 Xueyuanjie, Huixinglu Zigong Sichuan 643000 China
| | - Jiangang Yang
- Sichuan University of Science and Engineering; 180 Xueyuanjie, Huixinglu Zigong Sichuan 643000 China
| |
Collapse
|
33
|
Xing-lin H, Shi-ru J, Wu-jiu Z. Analysis of Daqu produced in different seasons. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Han Xing-lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
- China National Research Institute of Food and Fermentation Industries; Beijing China
| | - Jia Shi-ru
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, and College of Biotechnology; Tianjin University of Science and Technology; Tianjin China
| | - Zhang Wu-jiu
- China National Research Institute of Food and Fermentation Industries; Beijing China
| |
Collapse
|