1
|
Huang D, Wang L, Li K, Liu L, Chen X, He L, Wang L, Song A. Alkali-assisted extraction, characterization and encapsulation functionality of enzymatic hydrolysis-resistant prolamin from distilled spirit spent grain. Int J Biol Macromol 2024; 271:132664. [PMID: 38801853 DOI: 10.1016/j.ijbiomac.2024.132664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Curcumin is a natural lipophilic polyphenol that exhibits significant various biological properties such as antioxidant and anti-inflammatory properties following oral administration. However, its uses have shown limitations concerning aqueous solubility, bioavailability and biodegradability that could be improved by prolamin-based nanoparticle. In this study, curcumin was encapsulated into prolamin from sorghum (SOP) and wheat (WHP) and distilled spirit spent grain (DSSGP), which was obtained after microbial proteolysis of the former two cereal grains. All the three prolamins showed clear variation of protein profiles and microstructure as confirmed by electrophoresis analysis, disulfide bond determination and Fourier-transform infrared spectroscopy (FTIR). For curcumin-loaded nanospheres (NPs) fabrication, three prolamin-based NPs shared features of spherical shape, uniform particle size, and smooth surface. The average size ranged from 122 to 193 nm depending on the prolamin variety and curcumin loading. In the experiments in vitro, curcumin showed significantly improved UV/thermal stability. Furthermore, DSSGP was more resistant to enzymatic digestion in vitro, hence achieving the controlled release of curcumin in gastrointestinal tract. Collectively, the results indicated the improved bioavailability and biodegradability of curcumin encapsulated by DSSGP, which would be an innovative potential encapsulant for effective protection and targeted delivery of hydrophobic compounds.
Collapse
Affiliation(s)
- Diandian Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lingyuan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Keting Li
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Xingyi Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Angxin Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
2
|
Yang L, Xian C, Li P, Wang X, Song D, Zhao L, Zhang C. The spatio-temporal diversity and succession of microbial community and its environment driving factors during stacking fermentation of Maotai-flavor baijiu. Food Res Int 2023; 169:112892. [PMID: 37254340 DOI: 10.1016/j.foodres.2023.112892] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Stacking fermentation is an important stage of microbial expansion and enrichment in the brewing process of Maotai-flavor baijiu and has an important impact on quality. However, the structure and succession of microbial communities at different spatial points of fermented grains, as well as the key environmental factors driving community assembly, remain unclear. Here, we analyzed spatio-temporal similarities and differences in the microbial community structure and succession during 1-6 rounds of stacking fermentation of Maotai-flavor baijiu. The microbial diversity and richness in the pile center were higher than those at the pile surface. The dominant bacterial genus changed from Lactobacillus to Acetobacter, while the dominant fungal genus Pichia was gradually replaced by Candida, however, some microorganisms (Acetobacter, Thermoascus) could not occupy community dominance in both the pile surface and the pile center of fermented grains. Most of the biomarkers (Kroppenstedtia, Thermomyces, etc.) of the pile surface showed thermostable or thermophilic characteristics, while most biomarkers (Aspergillus, Hyphopicia, etc.) of the pile center were functional microorganisms. Furthermore, pH and moisture were the main environmental driving factors of community construction at the pile surface and the pile center, respectively, with starch and reducing sugars having a greater impact on the microbial community assembly of the pile center than that of the pile surface. The main differences in the metabolic pathways of the dominant bacterial genera of the pile surface and the pile center were concentrated around cell growth and death, amino acids, leading to enrichment and growth of microbial communities at the pile surface and nitrogen utilization at the pile center, respectively. This study reveals the spatio-temporal differences in microbial community structure, succession and corresponding environmental driving factors during stacking fermentation, which will provide guidance for regulating the microbial community diversity to produce high-quality Maotai-flavor baijiu.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Chun Xian
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai 564501, China
| | - Peng Li
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Xiangyong Wang
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Dandan Song
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Liang Zhao
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Chunlin Zhang
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China.
| |
Collapse
|
3
|
Zhang Z, Wei Y, Peng Z, Du P, Du X, Zuo G, Wang C, Li P, Wang J, Wang R. Exploration of microbiome diversity of stacked fermented grains by flow cytometry and cell sorting. Front Microbiol 2023; 14:1160552. [PMID: 37051523 PMCID: PMC10083240 DOI: 10.3389/fmicb.2023.1160552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/28/2023] Open
Abstract
Sauce-flavor baijiu is one of the twelve flavor types of Chinese distilled fermented product. Microbial composition plays a key role in the stacked fermentation of Baijiu, which uses grains as raw materials and produces flavor compounds, however, the active microbial community and its relationship remain unclear. Here, we investigated the total and active microbial communities of stacked fermented grains of sauce-flavored Baijiu using flow cytometry and high-throughput sequencing technology, respectively. By using traditional high-throughput sequencing technology, a total of 24 bacterial and 14 fungal genera were identified as the core microbiota, the core bacteria were Lactobacillus (0.08-39.05%), Acetobacter (0.25-81.92%), Weissella (0.03-29.61%), etc. The core fungi were Issatchenkia (23.11-98.21%), Monascus (0.02-26.36%), Pichia (0.33-37.56%), etc. In contrast, using flow cytometry combined with high-throughput sequencing, the active dominant bacterial genera after cell sorting were found to be Herbaspirillum, Chitinophaga, Ralstonia, Phenylobacterium, Mucilaginibacter, and Bradyrhizobium, etc., whereas the active dominant fungal genera detected were Aspergillus, Pichia, Exophiala, Candelabrochaete, Italiomyces, and Papiliotrema, etc. These results indicate that although the abundance of Acetobacter, Monascus, and Issatchenkia was high after stacked fermentation, they may have little biological activity. Flow cytometry and cell sorting techniques have been used in the study of beer and wine, but exploring the microbiome in such a complex environment as Chinese baijiu has not been reported. The results also reveal that flow cytometry and cell sorting are convenient methods for rapidly monitoring complex microbial flora and can assist in exploring complex environmental samples.
Collapse
Affiliation(s)
- Ziyang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yanwei Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Zehao Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Peng Du
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Xinyong Du
- Gubeichun Group Co., Ltd., Jinan, Shandong, China
| | - Guoying Zuo
- Gubeichun Group Co., Ltd., Jinan, Shandong, China
| | | | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
4
|
Effect of Koji on Flavor Compounds and Sensory Characteristics of Rice Shochu. Molecules 2023; 28:molecules28062708. [PMID: 36985679 PMCID: PMC10053614 DOI: 10.3390/molecules28062708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Koji is an important starter for rice shochu brewing and influences the rice shochu quality. Consequently, we studied the impacts of koji on the flavor compounds and sensory characteristics of rice shochu using molds Aspergillus kawachii SICC 3.917 (A-K), Aspergillus oryzae SICC 3.79(A-O), Aspergillus Niger CICC 2372 (A-N), Rhizopus oryzae CICC 40260 (R-O), and the traditional starter Qu (control). The effects of koji on the aroma components, free amino acids (FAAs), and overall sensory aspects of rice shochu were studied. These findings indicated that koji significantly affected the rice shochu’s quality. The content of total FAAs in rice shochu A-K (30.586 ± 0.944 mg/L) and A-O (29.919 ± 0.278 mg/L) was higher than others. The content of flavor compounds revealed that the aroma of rice shochu with various koji varied greatly from the smells of alcohols and esters. Shochu A-O had a higher concentration of aroma compounds and it exhibited a strong aroma and harmonious taste compared with the others. This research using taste compounds, FAAs, flavor intensity, and partial least squares regression (PLSR) showed that shochu A-O appeared to possess the best sensory qualities, with elevated concentrations of alcohols and sweet FAAs and lesser concentrations of sour FAAs. Therefore, the A-O mold is promising for the manufacture of rice shochu with excellent flavor and sensory characteristics.
Collapse
|
5
|
Identification and characterization of a novel tetrapeptide from enzymatic hydrolysates of Baijiu byproduct. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
7
|
Qin S, Wainaina S, Awasthi SK, Mahboubi A, Liu T, Liu H, Zhou Y, Liu H, Zhang Z, Taherzadeh MJ, Awasthi MK. Fungal dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 335:125296. [PMID: 34022478 DOI: 10.1016/j.biortech.2021.125296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, the influence of distinct hydraulic retention times (HRT) and organic loading rates (OLRs) on fungal dynamics during food waste anaerobic digestion in immersed membrane-based bio-reactors (iMBR) were investigated. The organic loading rate 4-8 g VS/L/d (R1) and 6-10 g VS/L/d (R2) were set in two iMBR. T1 (1d), T2 (15d) and T3 (34d) samples collected from each bioreactor were analyzed fungal community by using 18s rDNA. In R2, T2 had the most abundant Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. As for R1, T3 also had the richest Cryptomycota except above four kinds of fungi. Subsequently, the Principal Component Analysis (PCA) and Non-Metric Multi-Dimensional Scaling (NMDS) indicated that fungal diversity was varied among the all three phases (T1, T2, and T3) and each treatment (R1 and R2). Finally, the results showed that different OLRs and HRT have significantly influenced the fungal community.
Collapse
Affiliation(s)
- Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
8
|
Wang H, Huang Y, Huang Y. Microbiome diversity and evolution in stacking fermentation during different rounds of Jiang-flavoured Baijiu brewing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Liu S, Yang L, Zhou Y, He S, Li J, Sun H, Yao S, Xu S. Effect of mixed moulds starters on volatile flavor compounds in rice wine. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|