1
|
Xia T, Su S, Guo K, Wang L, Tang Z, Huo J, Song H. Characterization of key aroma-active compounds in blue honeysuckle (Lonicera caerulea L.) berries by sensory-directed analysis. Food Chem 2023; 429:136821. [PMID: 37478599 DOI: 10.1016/j.foodchem.2023.136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) berries are nutritionally rich and unique in flavor. However, its aroma compounds have not been known well. In this study, the key aroma-active compounds in 8 different varieties of blue honeysuckle berries were studied by sensory-directed analysis. Sensory evaluation suggested that the aroma profile of blue honeysuckle berry was fruity, floral, grassy, sweet, and sour. A total of 68 aroma compounds were detected by two-dimensional comprehensive gas chromatography-olfactometry-mass spectrometry analysis (GC × GC-O-MS). Then, aroma extraction dilution analysis (AEDA) and odor activity value (OAV) showed that 12 compounds were indicated to be the major aroma contributors. According to the principal component analysis (PCA) results, eight varieties were divided into three categories for their differences on alcohols and terpenoids content. Finally, the aroma recombination and omission experiments determined that linalool, hexanal, eucalyptol, octanal, nonanal, and ethyl 2-methylbutyrate were the key aroma-active compounds in blue honeysuckle berries.
Collapse
Affiliation(s)
- Tianze Xia
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shang Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Kunlun Guo
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lijin Wang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhongqiu Tang
- Forestry and Agricultural Academy of the Greater Khingan Mountains, Jiagedaqi 165000, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150006, China
| | - Huanlu Song
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Wu D, Xia Q, Cheng H, Zhang Q, Wang Y, Ye X. Changes of Volatile Flavor Compounds in Sea Buckthorn Juice during Fermentation Based on Gas Chromatography-Ion Mobility Spectrometry. Foods 2022; 11:3471. [PMID: 36360085 PMCID: PMC9655934 DOI: 10.3390/foods11213471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
Sea buckthorn is rich in polyphenolic compounds with antioxidant activities. However, it is very sour, and its odor is slightly unpleasant, so it requires flavor improvement. Fermentation is one potential method. Sea buckthorn juice was fermented at 37 °C for 72 h and then post-fermented at 4 °C for 10 days. The flavor-related properties of the sea buckthorn juice were evaluated during fermentation, including the pH, total soluble solids (TSS), color, sensory evaluation, and volatile flavors. The sea buckthorn fermented juice had a low pH. The total soluble solids decreased from 10.60 ± 0.10% to 5.60 ± 0.12%. The total color change was not more than 20%. Fermentation increased the sweet odor of the sea buckthorn juice, but the fruity flavor decreased and the bitter flavor increased. A total of 33 volatile flavors were identified by headspace gas chromatography-ion mobility spectrometry (GC-IMS), including 24 esters, 4 alcohols, 4 terpenes, and 1 ketone. Their total relative contents were 79.63-81.67%, 10.04-11.76%, 1.56-1.22%, and 0.25-0.55%, respectively. The differences in the characteristic volatile molecular species of the sea buckthorn juice at different fermentation stages could be visually discerned using fingerprint maps. Through principal component analysis (PCA), the total flavor difference of the sea buckthorn juice at different fermentation stages could be effectively distinguished into three groups: the samples fermented for 0 h and 12 h were in one group, the samples fermented for 36 h, 48 h, 60 h, and 72 h were in another group, and the samples fermented for 24 h were in another group. It is suggested that sea buckthorn juice be fermented for 36 h to improve its flavor. GC-IMS and PCA are effective methods of identifying and distinguishing the flavor characteristics of sea buckthorn juice. The above results can provide a theoretical basis for studying the changes in sea buckthorn's characteristics as a result of fermentation, particularly with regard to its flavor.
Collapse
Affiliation(s)
- Dan Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qile Xia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handling of Fruits, Hangzhou 310021, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Hu L, Liu R, Wang X, Zhang X. The Sensory Quality Improvement of Citrus Wine through Co-Fermentations with Selected Non- Saccharomyces Yeast Strains and Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8030323. [PMID: 32110914 PMCID: PMC7143248 DOI: 10.3390/microorganisms8030323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.
Collapse
Affiliation(s)
- Lanlan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (R.L.); (X.W.)
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-278-7282-927
| |
Collapse
|
4
|
Yang H, Sun J, Tian T, Gu H, Li X, Cai G, Lu J. Physicochemical characterization and quality of Dangshan pear wines fermented with different Saccharomyces cerevisiae. J Food Biochem 2019; 43:e12891. [PMID: 31368556 DOI: 10.1111/jfbc.12891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 12/01/2022]
Abstract
Three commercial yeasts strains, namely, Saccharomyces cerevisiae SY, DV10, and Drop Acid Yeast, were used for Dangshan pear wine fermentation. Monitoring main physical and chemical indexes and scoring comprehensive sensory characteristics to find a suitable yeast to produce Dangshan pear wine. The fermentation cycle of SY was short (15 days), and the SY-fermented wine had a suitable sugar-acid ratio, with a residual sugar content of 3.13 ± 0.05 g/L, total acid content of 3.40 ± 0.11 g/L, and ethanol content of 14.1 ± 0.27% (v/v). Additionally, 42 flavor compounds were detected in fermented Dangshan pear wine, and the total amount of flavor compounds was highest in the SY wine (2,584.72 μg/L). Combined with the comprehensive sensory evaluation scores, these results suggest that Saccharomyces cerevisiae SY was the most suitable strain to produce Dangshan pear wine. PRACTICAL APPLICATIONS: In this study, we compared the physical and chemical indicators of pear wine brewed by different Saccharomyces cerevisiae in the process of fermentation and the final quality of pear wine products. It was concluded that the pear wine produced by Saccharomyces cerevisiae SY had good quality. The study found a strain suitable for the fermentation of pear wine and provided a theoretical basis for the industrial production of pear wine. Next, we can try to use Saccharomyces cerevisiae SY for large-scale production of pear wine and try to sell it on the market.
Collapse
Affiliation(s)
- Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Tiantian Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hong Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|