1
|
Wicker C, Cano A, Decostre V, Froissart R, Maillot F, Perry A, Petit F, Voillot C, Wahbi K, Wenz J, Laforêt P, Labrune P. French recommendations for the management of glycogen storage disease type III. Eur J Med Res 2023; 28:253. [PMID: 37488624 PMCID: PMC10364360 DOI: 10.1186/s40001-023-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
The aim of the Protocole National De Diagnostic et de Soins/French National Protocol for Diagnosis and Healthcare (PNDS) is to provide advice for health professionals on the optimum care provision and pathway for patients with glycogen storage disease type III (GSD III).The protocol aims at providing tools that make the diagnosis, defining the severity and different damages of the disease by detailing tests and explorations required for monitoring and diagnosis, better understanding the different aspects of the treatment, defining the modalities and organisation of the monitoring. This is a practical tool, to which health care professionals can refer. PNDS cannot, however, predict all specific cases, comorbidities, therapeutic particularities or hospital care protocols, and does not seek to serve as a substitute for the individual responsibility of the physician in front of his/her patient.
Collapse
Affiliation(s)
- Camille Wicker
- Maladies métaboliques et hépatiques pédiatriques, CHRU Hautepierre, 1 Avenue Molière, 67200, Strasbourg, France
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme- CHU La Timone Enfants, 264 rue Saint-Pierre, 13385, Marseille cedex 5, France
| | - Valérie Decostre
- Institut de myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP. Université Paris Sorbonne, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Roseline Froissart
- Centre de Biologie et pathologie Est, maladies héréditaires du métabolisme, HFME, 59, Boulevard Pinel, 69677, Bron Cedex, France
| | - François Maillot
- Médecine Interne, Centre Référence Maladies Métaboliques, hôpital Bretonneau, 2 boulevard Tonnelé, 37044, Tours cedex 9, France
| | - Ariane Perry
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - François Petit
- Laboratoire de génétique, Hôpital Antoine Béclère, APHP. Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Catherine Voillot
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Karim Wahbi
- Service de cardiologie - Hôpital Cochin, APHP. Université Paris Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Joëlle Wenz
- Service d'hépatologie et transplantation hépatique pédiatriques, hôpital Bicêtre, APHP. Université Paris-Saclay, 94276, Le Kremlin Bicêtre Cedex, France
| | - Pascal Laforêt
- Neurologie, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France Hôpital Raymond Poincaré, AP-HP, Université Paris Saclay, 104 Boulevard Raymond Poincaré, 92380, Garches, France
| | - Philippe Labrune
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France.
| |
Collapse
|
2
|
Hennis PJ, Murphy E, Meijer RI, Lachmann RH, Ramachandran R, Bordoli C, Rayat G, Tomlinson DJ. Aerobic capacity and skeletal muscle characteristics in glycogen storage disease IIIa: an observational study. Orphanet J Rare Dis 2022; 17:28. [PMID: 35101075 PMCID: PMC8802498 DOI: 10.1186/s13023-022-02184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Individuals with glycogen storage disease IIIa (GSD IIIa) (OMIM #232400) experience muscle weakness and exercise limitation that worsen through adulthood. However, normative data for markers of physical capacity, such as strength and cardiovascular fitness, are limited. Furthermore, the impact of the disease on muscle size and quality is unstudied in weight bearing skeletal muscle, a key predictor of physical function. We aim to produce normative reference values of aerobic capacity and strength in individuals with GSD IIIa, and to investigate the role of muscle size and quality on exercise impairment. Results Peak oxygen uptake (V̇O2peak) was lower in the individuals with GSD IIIa than predicted based on demographic data (17.0 (9.0) ml/kg/min, 53 (24)% of predicted, p = 0.001). Knee extension maximum voluntary contraction (MVC) was also substantially lower than age matched predicted values (MVC: 146 (116) Nm, 57% predicted, p = 0.045), though no difference was found in MVC relative to body mass (1.88 (2.74) Nm/kg, 61% of predicted, p = 0.263). There was a strong association between aerobic capacity and maximal leg strength (r = 0.920; p = 0.003). Substantial inter-individual variation was present, with a high physical capacity group that had normal leg strength (MVC), and relatively high V̇O2peak, and a low physical capacity that display impaired strength and substantially lower V̇O2peak. The higher physical capacity sub-group were younger, had larger Vastus Lateralis (VL) muscles, greater muscle quality, undertook more physical activity (PA), and reported higher health-related quality of life. Conclusions V̇O2peak and knee extension strength are lower in individuals with GSD IIIa than predicted based on their demographic data. Patients with higher physical capacity have superior muscle size and structure characteristics and higher health-related quality of life, than those with lower physical capacity. This study provides normative values of these important markers of physical capacity. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02184-1.
Collapse
|
3
|
Hoogeveen IJ, de Boer F, Boonstra WF, van der Schaaf CJ, Steuerwald U, Sibeijn‐Kuiper AJ, Vegter RJK, van der Hoeven JH, Heiner‐Fokkema MR, Clarke KC, Cox PJ, Derks TGJ, Jeneson JAL. Effects of acute nutritional ketosis during exercise in adults with glycogen storage disease type IIIa are phenotype-specific: An investigator-initiated, randomized, crossover study. J Inherit Metab Dis 2021; 44:226-239. [PMID: 33448466 PMCID: PMC7891643 DOI: 10.1002/jimd.12302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Glycogen storage disease type IIIa (GSDIIIa) is an inborn error of carbohydrate metabolism caused by a debranching enzyme deficiency. A subgroup of GSDIIIa patients develops severe myopathy. The purpose of this study was to investigate whether acute nutritional ketosis (ANK) in response to ketone-ester (KE) ingestion is effective to deliver oxidative substrate to exercising muscle in GSDIIIa patients. This was an investigator-initiated, researcher-blinded, randomized, crossover study in six adult GSDIIIa patients. Prior to exercise subjects ingested a carbohydrate drink (~66 g, CHO) or a ketone-ester (395 mg/kg, KE) + carbohydrate drink (30 g, KE + CHO). Subjects performed 15-minute cycling exercise on an upright ergometer followed by 10-minute supine cycling in a magnetic resonance (MR) scanner at two submaximal workloads (30% and 60% of individual maximum, respectively). Blood metabolites, indirect calorimetry data, and in vivo 31 P-MR spectra from quadriceps muscle were collected during exercise. KE + CHO induced ANK in all six subjects with median peak βHB concentration of 2.6 mmol/L (range: 1.6-3.1). Subjects remained normoglycemic in both study arms, but delta glucose concentration was 2-fold lower in the KE + CHO arm. The respiratory exchange ratio did not increase in the KE + CHO arm when workload was doubled in subjects with overt myopathy. In vivo 31 P MR spectra showed a favorable change in quadriceps energetic state during exercise in the KE + CHO arm compared to CHO in subjects with overt myopathy. Effects of ANK during exercise are phenotype-specific in adult GSDIIIa patients. ANK presents a promising therapy in GSDIIIa patients with a severe myopathic phenotype. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT03011203.
Collapse
Affiliation(s)
- Irene J. Hoogeveen
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Foekje de Boer
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Willemijn F. Boonstra
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Caroline J. van der Schaaf
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Ulrike Steuerwald
- National Hospital of the Faroe Islands, Medical CenterTórshavnFaroe Islands
| | - Anita J. Sibeijn‐Kuiper
- Neuroimaging Center, Department of NeuroscienceUniversity Medical Center GroningenGroningenThe Netherlands
| | - Riemer J. K. Vegter
- Center for Human Movement Sciences, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Johannes H. van der Hoeven
- Department of Neurology, University Medical Centre GroningenUniversity of GroningenGroningenThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Kieran C. Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Pete J. Cox
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Terry G. J. Derks
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Jeroen A. L. Jeneson
- Neuroimaging Center, Department of NeuroscienceUniversity Medical Center GroningenGroningenThe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|