1
|
Křen V, Bojarová P. Rutinosidase and other diglycosidases: Rising stars in biotechnology. Biotechnol Adv 2023; 68:108217. [PMID: 37481095 DOI: 10.1016/j.biotechadv.2023.108217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Diglycosidases are a special class of glycosidases (EC 3.2.1) that catalyze the separation of intact disaccharide moieties from the aglycone part. The main diglycosidase representatives comprise rutinosidases that cleave rutinose (α-l-Rha-(1-6)-β-d-Glc) from rutin or other rutinosides, and (iso)primeverosidases processing (iso)primeverosides (d-Xyl-(1-6)-β-d-Glc), but other activities are known. Notably, some diglycosidases may be ranked as monoglucosidases with enlarged substrate specificity. Diglycosidases are found in various microorganisms and plants. Diglycosidases are used in the food industry for aroma enhancement and flavor modification. Besides their hydrolytic activity, they also possess pronounced synthetic (transglycosylating) capabilities. Recently, they have been demonstrated to glycosylate various substrates in a high yield, including peculiar species like inorganic azide or carboxylic acids, which is a unique feature in biocatalysis. Rhamnose-containing compounds such as rutinose are currently receiving increased attention due to their proven activity in anti-cancer and dermatological experimental studies. This review demonstrates the vast and yet underrated biotechnological potential of diglycosidases from various sources (plant, microbial), and reveals perspectives on the use of these catalysts as well as of their products in biotechnology.
Collapse
Affiliation(s)
- Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| |
Collapse
|
2
|
|
3
|
Le Grognec E, Chrétien JM, Zammattio F, Quintard JP. Methodologies Limiting or Avoiding Contamination by Organotin Residues in Organic Synthesis. Chem Rev 2015; 115:10207-60. [DOI: 10.1021/acs.chemrev.5b00196] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Erwan Le Grognec
- Chimie Et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230,
Faculté des Sciences et des Techniques, Université de Nantes, CNRS, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Jean-Mathieu Chrétien
- Chimie Et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230,
Faculté des Sciences et des Techniques, Université de Nantes, CNRS, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Françoise Zammattio
- Chimie Et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230,
Faculté des Sciences et des Techniques, Université de Nantes, CNRS, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Jean-Paul Quintard
- Chimie Et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230,
Faculté des Sciences et des Techniques, Université de Nantes, CNRS, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
4
|
Calaza MI, Sayago FJ, Laborda P, Cativiela C. Synthesis of [c]-Fused Bicyclic Proline Analogues. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthese und Pharmakologie von Proteasom-Inhibitoren. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthesis and pharmacology of proteasome inhibitors. Angew Chem Int Ed Engl 2013; 52:5450-88. [PMID: 23526565 DOI: 10.1002/anie.201207900] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Indexed: 12/17/2022]
Abstract
Shortly after the discovery of the proteasome it was proposed that inhibitors could stabilize proteins which ultimately would trigger apoptosis in tumor cells. The essential questions were whether small molecules would be able to inhibit the proteasome without generating prohibitive side effects and how one would derive these compounds. Fortunately, "Mother Nature" has generated a wide variety of natural products that provide distinct selectivities and specificities. The chemical synthesis of these natural products finally provided access to analogues and optimized drugs of which two different classes have been approved for the treatment of malignancies. Despite these achievements, additional lead structures derived from nature are under investigation and will be discussed with regard to their biological potential and chemical challenges.
Collapse
Affiliation(s)
- Andreas Rentsch
- Institut für Organische Chemie and Centre of Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Ziora ZM, Wimmer N, New R, Skwarczynski M, Toth I. Synthesis of glycolipopeptidic building blocks for carbohydrate receptor discovery. Carbohydr Res 2011; 346:1439-44. [DOI: 10.1016/j.carres.2011.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/04/2023]
|
8
|
Jäger L, Tretner C, Hartung H, Biedermann M. Pseudoelement Compounds, X Synthesis and Crystal Structure of New Complexes of the Type
trans
‐[Pt(H)X(PPh
3
)
2
with Cyanamide and Cyanomethanide Ligands. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/cber.19971300730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lothar Jäger
- Institute of Inorganic Chemistry, Martin Luther University of Wittenberg, D‐06099 Halle/Saale, Germany
| | - Carola Tretner
- Institute of Inorganic Chemistry, Martin Luther University of Wittenberg, D‐06099 Halle/Saale, Germany
| | - Helmut Hartung
- Institute of Physical Chemistry, Martin Luther University of Wittenberg, D‐06099 Halle/Saale, Germany
| | - Mathias Biedermann
- Institute of Physical Chemistry, Martin Luther University of Wittenberg, D‐06099 Halle/Saale, Germany
| |
Collapse
|
9
|
|
10
|
Bokach NA, Kukushkin VY, Haukka M, Pombeiro AJL. Synthesis of (1,2,4-Oxadiazole)palladium(II) Complexes by [2 + 3] Cycloaddition of Nitrile Oxides to Organonitriles in the Presence of PdCl2. Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200400580] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Yang Z, Cao H, Hu J, Shan R, Yu B. 1→2 Migration and concurrent glycosidation of phenyl 1-thio-α-mannopyranosides via 2,3-O-cyclic dioxonium intermediates. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(02)01452-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
|
13
|
Györgydeák Z, Szilágyi L, Paulsen H. Synthesis, Structure and Reactions of Glycosyl Azides. J Carbohydr Chem 1993. [DOI: 10.1080/07328309308021266] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Rinehart KL. Antiviral agents from novel marine and terrestrial sources. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 312:41-60. [PMID: 1514445 DOI: 10.1007/978-1-4615-3462-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- K L Rinehart
- Department of Chemistry, University of Illinois, Urbana 61801
| |
Collapse
|
15
|
Bartmann E, Bogdanovi?? B, Janke N, Schlichte K, Spliethoff B, Treber J, Westeppe U, Wilczok U, Liao S. Active Magnesium from Catalytically Prepared Magnesium Hydride or from Magnesium Anthracene and its Uses in the Synthesis. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/cber.19901230712] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|