1
|
Rollins-Smith LA. The future of amphibian immunology: Opportunities and challenges. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105237. [PMID: 39103004 DOI: 10.1016/j.dci.2024.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Yang K, Ying P, Sun B. Interleukin-34 is more suitable than macrophage colony-stimulating factor for predicting liver significant fibrosis in patients with chronic hepatitis B. Scand J Gastroenterol 2024; 59:78-84. [PMID: 37698305 DOI: 10.1080/00365521.2023.2254438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
AIMS Interleukin-34 (IL-34) and macrophage colony-stimulating factor (CSF-1) have similar functions, such as promoting the formation of liver fibrosis. This study aimed to evaluate and compare the diagnostic value of serum IL-34 and CSF-1 for significant liver fibrosis in patients with chronic hepatitis B (CHB). METHODS A total of 369 CHB patients, consisting of 208 HBeAg-negative patients and 161 HBeAg-positive patients, were enrolled in this study. Additionally, 72 healthy individuals served as healthy controls (HCs). Serum levels of IL-34 and CSF-1 were measured using the enzyme-linked immunosorbent assay method. Liver fibrosis grades were assessed using the modified Scheuer scoring system. RESULTS Serum IL-34 and CSF-1 levels exhibited significant elevation in both HBeAg-negative and HBeAg-positive patients in comparison to HCs (p < 0.001). IL-34 emerged as an independent factor linked to significant liver fibrosis, whereas CSF-1 did not exhibit such an association. Receiver operating characteristic (ROC) analysis indicated higher areas under the curves (AUCs) for IL-34 (0.814, p < 0.001 and 0.673, p < 0.001) when diagnosing significant liver fibrosis in HBeAg-negative and HBeAg-positive patients, respectively, as opposed to CSF-1 (0.602, p < 0.001; 0.619, p = 0.385). Within the HBeAg-negative patient subgroup, the AUC for IL-34 surpassed that of FIB-4 (p = 0.009) and APRI (p = 0.045). CONCLUSION Serum IL-34 has the potential to be a straightforward and practical biomarker that demonstrates superior performance to serum CSF-1 in the diagnosis of significant liver fibrosis in CHB patients, especially within the HBeAg-negative patients.
Collapse
Affiliation(s)
- Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Pan Ying
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Beibei Sun
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Senpuku H, Yoshimura K, Takai H, Maruoka Y, Yamashita E, Tominaga A, Ogata Y. Role of Macrophage Colony-Stimulating Factor for Staphylococcal Infection in the Oral Cavity. J Clin Med 2023; 12:5825. [PMID: 37762764 PMCID: PMC10532062 DOI: 10.3390/jcm12185825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE There are few valid indicators of oral infection owing to the complexity of pathogenic factors in oral diseases. Salivary markers are very useful for scrutinizing the symptoms of disease. To provide a reliable and useful predictive indicator of infection for opportunistic pathogens in individuals with compromised immune systems, such as those with periodontal diseases and Human Immunodeficiency Virus (HIV), this study examines opportunistic pathogens such as C. albicans and staphylococci and macrophage colony-stimulating factor (M-CSF) and CA125/MUC16 in saliva. The aim was to explore the correlations investigated among these factors. METHODS Samples were divided into two groups (based on patient sex, the absence and presence of dentures in elderly, or HIV-positive patients and healthy subjects), and the correlation was analyzed in two groups of elderly patients with periodontal disease (64.5 ± 11.2 years old) and HIV-infected patients (41.9 ± 8.4 years old). Healthy subjects (33.8 ± 9.1 years old) were also analyzed as a control. Levels of C. albicans, staphylococci, and M-CSF, which is an immunological factor for the differentiation of macrophage, and CA125/MUC16, which provides a protective lubricating barrier against infection, were investigated. RESULTS A significant and positive correlation between the levels of M-CSF and staphylococci was found in elderly individuals and HIV-positive patients treated with antiretroviral therapy. A significant and positive correlation between the levels of M-CSF and CD125/MUC16 was also found in both patients. These correlations were enhanced in both patients as compared with healthy subjects. CONCLUSION Salivary M-CSF might be useful as a new indicator of opportunistic infection caused by staphylococci and a defense against infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Microbiology and Immunology, Nihon University of School of Dentistry at Matsudo, Matsudo 271-8587, Japan
| | | | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan; (H.T.)
| | - Yutaka Maruoka
- National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Erika Yamashita
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan;
| | - Akira Tominaga
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan; (H.T.)
| |
Collapse
|
4
|
Hossainey MRH, Hauser KA, Garvey CN, Kalia N, Garvey JM, Grayfer L. A perspective into the relationships between amphibian ( Xenopus laevis) myeloid cell subsets. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220124. [PMID: 37305910 PMCID: PMC10258660 DOI: 10.1098/rstb.2022.0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 06/13/2023] Open
Abstract
Macrophage (Mϕ)-lineage cells are integral to the immune defences of all vertebrates, including amphibians. Across vertebrates, Mϕ differentiation and functionality depend on activation of the colony stimulating factor-1 (CSF1) receptor by CSF1 and interluekin-34 (IL34) cytokines. Our findings to date indicate that amphibian (Xenopus laevis) Mϕs differentiated with CSF1 and IL34 are morphologically, transcriptionally and functionally distinct. Notably, mammalian Mϕs share common progenitor population(s) with dendritic cells (DCs), which rely on fms-like tyrosine kinase 3 ligand (FLT3L) for differentiation while X. laevis IL34-Mϕs exhibit many features attributed to mammalian DCs. Presently, we compared X. laevis CSF1- and IL34-Mϕs with FLT3L-derived X. laevis DCs. Our transcriptional and functional analyses indicated that indeed the frog IL34-Mϕs and FLT3L-DCs possessed many commonalities over CSF1-Mϕs, including transcriptional profiles and functional capacities. Compared to X. laevis CSF1-Mϕs, the IL34-Mϕs and FLT3L-DCs possess greater surface major histocompatibility complex (MHC) class I, but not MHC class II expression, were better at eliciting mixed leucocyte responses in vitro and generating in vivo re-exposure immune responses against Mycobacterium marinum. Further analyses of non-mammalian myelopoiesis akin to those described here, will grant unique perspectives into the evolutionarily retained and diverged pathways of Mϕ and DC functional differentiation. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Muhammad Riadul Haque Hossainey
- Department of Biological Sciences, The George Washington University, 800 22nd Street Northwest, Suite 6000, Washington DC 20052, USA
| | - Kelsey A. Hauser
- Department of Biological Sciences, The George Washington University, 800 22nd Street Northwest, Suite 6000, Washington DC 20052, USA
| | - Christina N. Garvey
- Department of Biological Sciences, The George Washington University, 800 22nd Street Northwest, Suite 6000, Washington DC 20052, USA
| | - Namarta Kalia
- Department of Biological Sciences, The George Washington University, 800 22nd Street Northwest, Suite 6000, Washington DC 20052, USA
| | - Juliette M. Garvey
- Department of Biological Sciences, The George Washington University, 800 22nd Street Northwest, Suite 6000, Washington DC 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, 800 22nd Street Northwest, Suite 6000, Washington DC 20052, USA
| |
Collapse
|
5
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
7
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Boruah P, Deka N. Interleukin 34 in Disease Progressions: A Comprehensive Review. Crit Rev Immunol 2023; 43:25-43. [PMID: 37943151 DOI: 10.1615/critrevimmunol.2023050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
IL-34, a cytokine, discovered a decade before and is known to be a colony stimulating factor CSF-1 receptor (CSF-1R) ligand. Along with CSF-1R, it also interacts with syndecan-1 receptors and protein-tyrosine phosphatase (PTP-ζ). Hence, IL-34 takes part in a number of biological activities owing to its involvement in different signaling pathways. This review was done to analyze the recent studies on the functions of IL-34 in progression of diseases. The role of IL-34 under the physiological and pathological settings is studied by reviewing current data. In the last ten years, studies suggested that the IL-34 was involved in the regulation of morbid states such as inflammatory diseases, infections, transplant rejection, autoimmune diseases, neurologic diseases, and cancer. In general, the involvement of IL-34 is observed in many serious health ailments like metabolic diseases, heart diseases, infections and even cancer. As such, IL-34 can be regarded as a therapeutic target, potential biomarker or as a therapeutic tool, which ought to be assessed in future research activities.
Collapse
Affiliation(s)
- Prerona Boruah
- Shanghai Veterinary Research Institute, Shanghai, China; School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Nikhita Deka
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
9
|
Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104510. [PMID: 35985564 DOI: 10.1016/j.dci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Hamish I McCallum
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
10
|
Wang H, Zheng F, Ouyang A, Yuan G, Su J, Liu X. Blunt snout bream (Megalobrama amblycephala) MaCSF-1 contributes to proliferation, phagocytosis and immunoregulation of macrophages via MaCSF-1R. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1113-1126. [PMID: 35803511 DOI: 10.1016/j.fsi.2022.06.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
CSF-1 and CSF-1R have been well demonstrated in humans, regulating the differentiation, proliferation and survival of the mononuclear phagocyte system. However, the functional study on MaCSF-1 and MaCSF-1R from blunt snout bream (Megalobrama amblycephala) is still unknown. In the present study, we cloned and functionally characterized MaCSF-1 and MaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that both MaCSF-1 and MaCSF-1R were mostly close to the grass carp counterparts. Tissue distribution analysis showed that both MaCSF-1 and MaCSF-1R were widely distributed in all examined tissues, dominantly distributed in spleen, blood and head kidney tissues. Furthermore, confocal microscopy assay and flow cytometry assay showed that MaCSF-1R was the marker on the surface of macrophages. Recombinant MaCSF-1 promoted macrophage proliferation, phagocytosis and the production of IL-10. Through the pull-down experiments and indirect immunofluorescence experiments, the interaction between MaCSF-1 and MaCSF-1R was confirmed. To explore the relationship between MaCSF-1 and its receptor, MaCSF-1R and MaCSF-1R antibody was prepared. Then the MaCSF-1R blockage assay indicated that the role of MaCSF-1 on the macrophages proliferation and phagocytosis was weakened, leading the reduction of IL-10 expression level. In conclusion, MaCSF-1R is the marker on the surface of macrophage membrane; and MaCSF-1 promotes macrophage proliferation, phagocytosis, and significantly increased the expression levels of IL-10 depended on the interacting with MaCSF-1R. This study provides basal data for the biological function of MaCSF-1 and MaCSF-1R, and is valuable for the exploration of MaCSF-1 and MaCSF-1R molecular interactions.
Collapse
Affiliation(s)
- Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
11
|
Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L. The Roles of Amphibian ( Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections. Viruses 2021; 13:v13112299. [PMID: 34835105 PMCID: PMC8621048 DOI: 10.3390/v13112299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Infections by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to global amphibian decline. The Xenopus laevis frog is an ideal research platform upon which to study the roles of distinct frog leukocyte populations during FV3 infections. Frog macrophages (MΦs) are integrally involved during FV3 infection, as they facilitate viral dissemination and persistence but also participate in immune defense against this pathogen. In turn, MΦ differentiation and functionality depend on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by CSF-1 and iterleukin-34 (IL-34) cytokines. Our past work indicated that X. laevis CSF-1 and IL-34 give rise to morphologically and functionally distinct frog MΦ subsets, and that these CSF-1- and IL-34-MΦs respectively confer susceptibility and antiviral resistance to FV3. Because FV3 targets the frog kidneys and establishes chronic infections therein, presently we examined the roles of the frog CSF-1- and IL-34-MΦs in seeding and maintaining these chronic kidney infections. Our findings indicate that the frog CSF-1-MΦs result in more prominent kidney FV3 infections, which develop into greater reservoirs of lingering FV3 marked by infiltrating leukocytes, fibrosis, and overall immunosuppressive states. Moreover, the antiviral effects of IL-34-MΦs are short-lived and are lost as FV3 infections progress.
Collapse
|
12
|
Rollins-Smith LA, Le Sage EH. Batrachochytrium fungi: stealth invaders in amphibian skin. Curr Opin Microbiol 2021; 61:124-132. [PMID: 33964650 DOI: 10.1016/j.mib.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Amphibian populations around the world have been affected by two pathogenic fungi within the phylum Chytridiomycota. Batrachochytrium dendrobatidis (Bd) has infected hundreds of species and led to widespread declines and some species extinctions. Batrachochytrium salamandrivorans (Bsal) has devastated some native European salamanders, especially the iconic fire salamanders (Salamandra salamandra). Comparative genomic studies show that Bd is more diverse and widespread than previously thought, and global lineages occur together allowing for the development of hybrid lineages. New studies raise the concern of greater pathogenesis if both Bd and Bsal infect the same host. Although amphibians possess robust immune defenses, co-infected and many single-infected hosts seem unable to mount effective immune responses. A strong defense may actually be harmful. Analysis of Bd and Bsal secretions documents small metabolites that signal high density to limit their growth and to suppress adaptive immune defenses, thus enabling a stealth presence in the skin compartment.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Emily H Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
13
|
Gu H, Wang B, He J, Hu Y. Macrophage colony stimulating factor (MCSF) of Japanese flounder (Paralichthys olivaceus): Immunoregulatory property, anti-infectious function, and interaction with MCSF receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103920. [PMID: 33189746 DOI: 10.1016/j.dci.2020.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Macrophage colony-stimulating factor (MCSF) is an essential growth factor to control the proliferation, differentiation and survival of the macrophage lineage in vertebrates. Sequences of MCSF have been identified in multiple teleost species, however, the functional investigations of MCSF were documented in only a few species. In this study, we examined the biological activity and the immunomodulatory property of a MCSF homologue, PoMCSF, from Japanese flounder (Paralichthys olivaceus). Structural analysis showed that PoMCSF possesses conserved structural characteristics of MCSF proteins, including a signal peptide, a CSF-1 domain, and a transmembrane region closed to the C-terminal. Under normal physiological condition, PoMCSF expression distributes in all the examined tissues, the highest three tissues are blood, muscle, and head kidney. When infected by extracellular and intracellular bacterial pathogens and viral pathogen, the PoMCSF expression patterns vary with different types of microbial pathogens infection and different immune tissues. In vitro experiment showed recombinant PoMCSF promoted the activity of macrophage. In vivo experiment indicated that PoMCSF overexpression boosted the defensive ability of flounder against Edwardsiella piscicida, a severe fish pathogen that infects multiple species of economically important fish, and regulated the expression of multiple immune-related genes. To explore the relationship between PoMCSF and its receptor PoMCSFR, anti-PoMCSFR antibody was prepared and PoMCSFR knockdown was conducted. The neutralization assay showed that when PoMCSFR was neutralized by its antibody, the role of PoMCSF on host defense against E. piscicida was weakened. Knockdown of PoMCSFR impaired the phagocytic capacity of macrophages. Collectively, these findings suggest that PoMCSF plays a crucial role in the immune defense system of Japanese flounder and the effect of PoMCSF is dependent on PoMCSFR. This study provides new insights into the biological activity of MCSF and the relationship between MCSF and MCSFR in teleost.
Collapse
Affiliation(s)
- Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Bo Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Jiaojiao He
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
14
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
15
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Yaparla A, Koubourli DV, Popovic M, Grayfer L. Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103798. [PMID: 32745480 DOI: 10.1016/j.dci.2020.103798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The differentiation of distinct leukocyte subsets is governed by lineage-specific growth factors that elicit disparate expression of transcription factors and markers by the developing cell populations. For example, macrophages (Mφs) and granulocytes (Grns) arise from common granulocyte-macrophage progenitors in response to distinct myeloid growth factors. In turn, myelopoiesis of the Xenopus laevis anuran amphibian appears to be unique to other studied vertebrates in several respects while the functional differentiation of amphibian Mφs and Grns from their progenitor cells remains poorly understood. Notably, the expression of colony stimulating factor-1 receptor (CSF-1R) or CSF-3R on granulocyte-macrophage progenitors marks their commitment to Mφ- or Grn-lineages, respectively. CSF-1R is activated by the colony stimulating factor-1 (CSF-1) and interleukin (IL-34) cytokines, resulting in morphologically and functionally distinct Mφ cell types. Conversely, CSF-3R is ligated by CSF-3 in a process indispensable for granulopoiesis. Presently, we explore the relationships between X. laevis CSF-1-Mφs, IL-34-Mφs and CSF-3-Grns by examining their expression of key lineage-specific transcription factor and myeloid marker genes as well as their enzymology. Our findings suggest that while the CSF-1- and IL-34-Mφs share some commonalities, the IL-34-Mφs possess transcriptional patterns more akin to the CSF-3-Grns. IL-34-Mφs also possess robust expression of dendritic cell-associated transcription factors and surface marker genes, further underlining the difference between this cell type and the CSF-1-derived frog Mφ subset. Moreover, the three myeloid populations differ in their respective tartrate-resistant acid phosphatase, specific- and non-specific esterase activity. Together, this work grants new insights into the developmental relatedness of these three frog myeloid subsets.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|