1
|
Dirks RP, Ordas A, Jong-Raadsen S, Brittijn SA, Haks MC, Henkel CV, Oravcova K, Racz PI, Tuinhof-Koelma N, Korzeniowska nee Wiweger MI, Gillespie SH, Meijer AH, Ottenhoff THM, Jansen HJ, Spaink HP. The Human Pathogen Mycobacterium tuberculosis and the Fish Pathogen Mycobacterium marinum Trigger a Core Set of Late Innate Immune Response Genes in Zebrafish Larvae. BIOLOGY 2024; 13:688. [PMID: 39336115 PMCID: PMC11429319 DOI: 10.3390/biology13090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Zebrafish is a natural host of various Mycobacterium species and a surrogate model organism for tuberculosis research. Mycobacterium marinum is evolutionarily one of the closest non-tuberculous species related to M. tuberculosis and shares the majority of virulence genes. Although zebrafish is not a natural host of the human pathogen, we have previously demonstrated successful robotic infection of zebrafish embryos with M. tuberculosis and performed drug treatment of the infected larvae. In the present study, we examined for how long M. tuberculosis can be propagated in zebrafish larvae and tested a time series of infected larvae to study the transcriptional response via Illumina RNA deep sequencing (RNAseq). Bacterial aggregates carrying fluorescently labeled M. tuberculosis could be detected up to 9 days post-infection. The infected larvae showed a clear and specific transcriptional immune response with a high similarity to the inflammatory response of zebrafish larvae infected with the surrogate species M. marinum. We conclude that M. tuberculosis can be propagated in zebrafish larvae for at least one week after infection and provide further evidence that M. marinum is a good surrogate model for M. tuberculosis. The generated extensive transcriptome data sets will be of great use to add translational value to zebrafish as a model for infection of tuberculosis using the M. marinum infection system. In addition, we identify new marker genes such as dusp8 and CD180 that are induced by M. tuberculosis infection in zebrafish and in human macrophages at later stages of infection that can be further investigated.
Collapse
Affiliation(s)
- Ron P. Dirks
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Anita Ordas
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Susanne Jong-Raadsen
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Sebastiaan A. Brittijn
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands (T.H.M.O.)
| | - Christiaan V. Henkel
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Katarina Oravcova
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow G61 1QH, UK;
| | - Peter I. Racz
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Nynke Tuinhof-Koelma
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | | | - Stephen H. Gillespie
- Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife KY16 9TF, UK;
| | | | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands (T.H.M.O.)
| | - Hans J. Jansen
- ZF-Screens B.V., J.H. Oortweg 19, 2333 CH Leiden, The Netherlands (S.A.B.); (C.V.H.); (P.I.R.); (N.T.-K.); (M.I.K.n.W.); (H.J.J.)
| | - Herman P. Spaink
- Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
2
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
3
|
Fan Z, Pathak JL, Ge L. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases. Front Cell Dev Biol 2021; 9:713254. [PMID: 34414191 PMCID: PMC8369417 DOI: 10.3389/fcell.2021.713254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Zhou Fan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Abstract
![]()
The development of
lipopeptides (lipidated peptides) for vaccines
is discussed, including their role as antigens and/or adjuvants. Distinct
classes of lipopeptide architectures are covered including simple
linear and ligated constructs and lipid core peptides. The design,
synthesis, and immunological responses of the important class of glycerol-based
Toll-like receptor agonist lipopeptides such as Pam3CSK4, which contains three palmitoyl chains and a CSK4 hexapeptide sequence, and many derivatives of this model immunogenic
compound are also reviewed. Self-assembled lipopeptide structures
including spherical and worm-like micelles that have been shown to
act as vaccine agents are also described. The work discussed includes
examples of lipopeptides developed with model antigens, as well as
for immunotherapies to treat many infectious diseases including malaria,
influenza, hepatitis, COVID-19, and many others, as well as cancer
immunotherapies. Some of these have proceeded to clinical development.
The research discussed highlights the huge potential of, and diversity
of roles for, lipopeptides in contemporary and future vaccine development.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|