1
|
Guo Y, Cai W, Xie W, Xu Y, Li X, Yu C, Wu Q. Sodium houttuyfonate modulates the lung Th1/Th2 balance and gut microbiota to protect against pathological changes in lung of ovalbumin-induced asthmatic mice. J Asthma 2024:1-13. [PMID: 39021077 DOI: 10.1080/02770903.2024.2380525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The gut-lung axis involves microbial and product interactions between the lung and intestine. Antibiotics for chronic asthma can cause intestinal dysbiosis, disrupting this axis. Sodium houttuyfonate (SH) has diverse biological activities, including modifying gut microbiota, antibacterial, and anti-inflammatory. This study aims to explore the relationship between SH, CD4+ T cells, and gut microbiota. METHODS Allergic asthma was experimentally induced in mice through injection and inhalation of ovalbumin. After the administration of different amounts of SH, ELISA was utilized to ascertain the levels of inflammatory cytokines in the serum, flow cytometry was used to examine the levels of Th1/Th2 cytokines in CD4+ cells from lung tissues. The expression of T-bet and GATA3 in lung tissue was determined by Western blotting and quantitative real-time PCR assay. Gut microbiota was determined by 16S rRNA gene sequencing. RESULTS The results showed that SH can alleviate pulmonary injury in asthmatic mice, reducing serum levels of IL-4, IL-5, and IL-13 while simultaneously increasing IFN-γ. Furthermore, SH has been observed to modulate the balance of Th1/Th2 cells by up-regulating the mRNA and protein expression of T-bet but down-regulating GATA3 in the lung tissues of asthmatic mice, thereby promoting the differentiation of Th1 cells. Additionally, SH can regulate the variety and composition of gut microbiota especially genus Akkermansia in asthmatic mice. CONCLUSION SH can alleviate asthma through the regulation of Th1/Th2 cells and gut microbiota.
Collapse
Affiliation(s)
- Yanping Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Cai
- School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Wei Xie
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yunlu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuejian Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Chenhuan Yu
- Experimental animal platform, Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Qiaofeng Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Feng Z, Gu L, Lin J, Wang Q, Yu B, Yao X, Feng Z, Zhao G, Li C. Formononetin protects against Aspergillus fumigatus Keratitis: Targeting inflammation and fungal load. Int Immunopharmacol 2024; 132:112046. [PMID: 38593508 DOI: 10.1016/j.intimp.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1β. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1β, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.
Collapse
Affiliation(s)
- Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaofeng Yao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zheng Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Tian C, Liu Q, Zhang X, Li Z. Blocking group 2 innate lymphoid cell activation and macrophage M2 polarization: potential therapeutic mechanisms in ovalbumin-induced allergic asthma by calycosin. BMC Pharmacol Toxicol 2024; 25:30. [PMID: 38650035 PMCID: PMC11036756 DOI: 10.1186/s40360-024-00751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.
Collapse
Affiliation(s)
- Chunyan Tian
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Graduate, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Liu
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Zhang
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhuying Li
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
4
|
Itoga M, Ishioka Y, Makiguchi T, Tanaka H, Taima K, Saito N, Tomita H, Tasaka S. Role of G-protein-coupled estrogen receptor in the pathogenesis of chronic asthma. Immunol Lett 2024; 265:16-22. [PMID: 38142780 DOI: 10.1016/j.imlet.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM G protein-coupled estrogen receptor (GPER) is an estrogen receptor located on the plasma membrane. We previously reported that the administration of G-1, a GPER-specific agonist, suppressed development of acute ovalbumin (OVA)-induced asthma in a mouse model. Herein, we evaluate the involvement of GPER in a mouse model of chronic OVA asthma. METHODS G-1 or saline was administered subcutaneously to BALB/c mice with chronic OVA asthma, and pathological and immunological evaluation was performed. In addition, Foxp3-expressing CD4-positive T-cells in the spleen and ILC2 in the lungs were measured using flow cytometry. RESULTS We observed a significant decrease in the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) in the G-1 treated group. In the airways, inflammatory cell accumulation, Th2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and epithelial cytokine TSLP were suppressed, while in the BALF, anti-inflammatory cytokines (IL-10 and TGF-β) were increased. Furthermore, in splenic mononuclear cells, Foxp3-expressing CD4-positive T-cells were increased in the G-1 group, whereas treatment with G-1 did not change the percentage of ILC2 in the lungs. CONCLUSION G-1 administration suppressed allergic airway inflammation in mice with chronic OVA asthma. GPER may be a potential therapeutic target for chronic allergic asthma.
Collapse
Affiliation(s)
- Masamichi Itoga
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Division of Infection Control and Prevention, Hirosaki University Hospital, 53 Honcho, Hirosaki, 036-8563, Japan.
| | - Yoshiko Ishioka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Tomonori Makiguchi
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kageaki Taima
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Norihiro Saito
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Division of Infection Control and Prevention, Hirosaki University Hospital, 53 Honcho, Hirosaki, 036-8563, Japan
| | - Hirofumi Tomita
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
5
|
Zhang L, Wu Q, Huang Y, Zheng J, Guo S, He L. Formononetin ameliorates airway inflammation by suppressing ESR1/NLRP3/Caspase-1 signaling in asthma. Biomed Pharmacother 2023; 168:115799. [PMID: 37922653 DOI: 10.1016/j.biopha.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Since inhaled glucocorticoids are the first-line treatment for asthma, asthma management becomes extremely difficult when asthma does not react well to glucocorticoids. Formononetin, a bioactive isoflavone and typical phytoestrogen, has been shown to have an anti-inflammatory impact while alleviating epithelial barrier dysfunction, which plays a role in the pathogenesis of allergic illnesses like asthma. However, the biological mechanisms behind this impact are unknown. As a result, we set out to investigate the effects of formononetin on airway inflammation and epithelial barrier repair in house dust mite (HDM)-induced asthmatic mice. We further expanded on formononetin's putative mode of action in reducing airway inflammation by modifying epithelial barrier dysfunction. In the current study, researchers discovered that formononetin significantly lowered total IgE levels in serum and interleukin (IL)-4, IL-6, and IL-17A levels in bronchoalveolar lavage fluid (BALF) in HDM-challenged asthmatic mice. Experiments on cell proliferation, migration, and apoptosis were performed in vitro to determine the effect of formononetin on bronchial epithelial barrier repair. Furthermore, in lipopolysaccharide (LPS)-stimulated 16HBE cells, formononetin increased cell proliferation and migration while preventing apoptosis and lowering the Bax/Bcl-2 ratio. In vitro and in vivo, formononetin significantly inhibited toll-like receptor 4 (TLR4) and estrogen receptor (ESR1)/Nod-like receptor family pyrin domain-containing protein 3 (NLRP3)/Caspase-1 signaling. These findings show that formononetin can reduce airway inflammation in HDM-challenged asthmatic mice by promoting epithelial barrier repair and possibly by inhibiting ESR1/NLRP3/Caspase-1 signaling as the underlying mechanism; formononetin could be a promising alternative treatment for asthma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuying Huang
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zheng
- Department of Respiratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Gu X, Chen Y, Qian P, He T, Wu Y, Lin W, Zheng J, Hong M. Cimifugin suppresses type 2 airway inflammation by binding to SPR and regulating its protein expression in a non-enzymatic manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154657. [PMID: 36701995 DOI: 10.1016/j.phymed.2023.154657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cimifugin is one of the main bioactive components of Yu-Ping-Feng-San, a well-known traditional Chinese medicine, which can effectively relieve Allergic asthma (AA) and atopic dermatitis and reduce recurrence in clinic. However, the underlying mechanism of cimifugin on AA is still unknown. PURPOSE In the present study, we aimed to investigate the effect and mechanism of cimifugin on AA. STUDY DESIGN In vivo and in vitro experimental studies were performed. METHODS The effect of cimifugin on AA was demonstrated in vivo and in vitro. Sepiapterin reductase (SPR) was predicted as the most potent target of cimifugin in treating AA by reverse docking. Molecular docking and microscale thermophoresis (MST) were used to analyze the direct binding between cimifugin and SPR. Overexpression and interference of SPR were performed to verify whether targeting SPR is a key step of cimifugin in the treatment of AA. QM385, an inhibitor of SPR, was administrated in vivo and in vitro to evaluate the role of SPR in AA. Further, HPLC and cell-free direct hSPR enzyme activity assay were performed to research whether cimifugin regulated SPR by influencing the enzyme activity. Simultaneously, the inhibitors of protein degradation were used in vitro to explore the mechanism of cimifugin on SPR. RESULTS We found cimifugin effectively alleviated AA by reducing airway hyperresponsiveness, inhibiting type 2 cytokines-mediated airway inflammation, and restoring the expression of epithelial barrier proteins. Molecular docking predicted the direct binding ability of cimifugin to SPR, which was further verified by MST. Notably, the therapeutic effect of cimifugin on AA was dampened with SPR interfering, in contrast, the phenotypic features of AA were significantly alleviated with QM385 application both in vivo and in vitro. Interestingly, cimifugin showed no effect on the enzyme activity of SPR, as the level of its substrate sepiapterin was not affected with cimifugin treatment by cell-free enzyme activity assay. Furthermore, we found cimifugin could reduce SPR protein expression without affecting its mRNA expression probably through autophagosome pathway. CONCLUSIONS To our knowledge, we're reporting for the first time that cimifugin can suppresses type 2 airway inflammation to alleviate AA by directly binding to SPR and regulating its protein expression in a non-enzymatic manner.
Collapse
Affiliation(s)
- Xiaoqun Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Peiyao Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Ting He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yameng Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China; Department of Pharmacology, School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing 210023, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
7
|
Sawane K, Nagatake T, Hosomi K, Kunisawa J. Anti-allergic property of dietary phytoestrogen secoisolariciresinol diglucoside through microbial and β-glucuronidase-mediated metabolism. J Nutr Biochem 2023; 112:109219. [PMID: 36375731 DOI: 10.1016/j.jnutbio.2022.109219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
Abstract
Phytoestrogens play pivotal roles in controlling not only the endocrine system but also inflammatory metabolic disorders. However, the effects of dietary phytoestrogens on allergic diseases and underlying mechanisms remain unclear. In this study, we revealed the unique metabolic conversion of phytoestrogen to exert anti-allergic properties, using an ovalbumin-induced allergic rhinitis mouse model. We found that dietary secoisolariciresinol diglucoside (SDG), a phytoestrogen abundantly present in flaxseed, alleviated allergic rhinitis by the microbial conversion to enterodiol (ED). We also found that ED circulated mainly in the glucuronide form (EDGlu) in blood, and deconjugation of EDGlu to ED aglycone occurred in the nasal passage; this activity was enhanced after the induction of allergic rhinitis, which was mediated by β-glucuronidase. We further found that IgE-mediated degranulation was inhibited by ED aglycone, but not by EDGlu, in a G protein-coupled receptor 30 (GPR30)-dependent manner. These results provide new insights into the anti-allergic properties of phytoestrogens and their metabolism in vivo for the development of novel therapeutic strategies against allergic rhinitis.
Collapse
Affiliation(s)
- Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, NIBIOHN; Graduate School of Medicine, Graduate School of Science and Graduate School of Dentistry, Osaka University, Osaka, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Foxp2 inhibits Th9 cell differentiation and attenuates allergic airway inflammation in a mouse model of ovalbumin-induced asthma. Int Immunopharmacol 2022; 111:109060. [PMID: 35930910 DOI: 10.1016/j.intimp.2022.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to explore the effects of forkhead box P2 gene (Foxp2) on T-helper 9 (Th9) differentiation in asthmatic mice. An in vivo asthmatic mouse model was induced with ovalbumin (OVA). An in vitro model was established by culturing CD4+ T cells with TGF-β, IL-4, and anti-IFN-γ. ELISA, flow cytometry, qRT-PCR and Western blot were performed to examine IL-9 secretion, Th9 cell number, and Th9 cell transcription factor expression, respectively. Pathological changes in lung tissues and airway mucus secretion were assessed with HE and PAS glycogen staining. Anti-IL-9 mAb reversed the elevation in Th9 cells and IL-9 expression in lung tissues and bronchoalveolar lavage fluid (BALF) of asthmatic mice. Foxp2 was downregulated in BALF and lung tissue of asthmatic mice and Th9 cells. Overexpression of Foxp2 inhibited Th9 cell differentiation in vitro and improved airway inflammation in vivo. Our study suggests that overexpression of Foxp2 attenuates allergic asthma by inhibiting Th9 cell differentiation.
Collapse
|
9
|
Périz M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Best I, Pastor-Soplin S, Castell M, Massot-Cladera M. Influence of Consumption of Two Peruvian Cocoa Populations on Mucosal and Systemic Immune Response in an Allergic Asthma Rat Model. Nutrients 2022; 14:nu14030410. [PMID: 35276769 PMCID: PMC8840350 DOI: 10.3390/nu14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022] Open
Abstract
Different cocoa populations have demonstrated a protective role in a rat model of allergic asthma by attenuating the immunoglobulin (Ig) E synthesis and partially protecting against anaphylactic response. The aim of this study was to ascertain the effect of diets containing two native Peruvian cocoa populations (“Amazonas Peru” or APC, and “Criollo de Montaña” or CMC) and an ordinary cocoa (OC) on the bronchial compartment and the systemic and mucosal immune system in the same rat model of allergic asthma. Among other variables, cells and IgA content in the bronchoalveolar lavage fluid (BALF) and serum anti-allergen antibody response were analyzed. The three cocoa populations prevented the increase of the serum specific IgG1 (T helper 2 isotype). The three cocoa diets decreased asthma-induced granulocyte increase in the BALF, which was mainly due to the reduction in the proportion of eosinophils. Moreover, both the OC and CMC diets were able to prevent the leukocyte infiltration caused by asthma induction in both the trachea and nasal cavity and decreased the IgA in both fecal and BALF samples. Overall, these results highlight the potential of different cocoa populations in the prevention of allergic asthma.
Collapse
Affiliation(s)
- Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Ivan Best
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru;
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutracéuticos, Universidad San Ignacio de Loyola, Lima 15024, Peru
- Correspondence: (I.B.); (M.C.); Tel.: +34-93-402-4505 (M.C.)
| | - Santiago Pastor-Soplin
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru;
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.B.); (M.C.); Tel.: +34-93-402-4505 (M.C.)
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
10
|
Yang S, Yin Z, Zhu G. A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. Eur J Pharmacol 2021; 908:174363. [PMID: 34297966 DOI: 10.1016/j.ejphar.2021.174363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Aging-related diseases, especially vascular and neurological disorders cause huge economic burden. How to delay vascular and neurological aging is one of the insurmountable questions. G protein-coupled estrogen receptor 1 (GPER) has been extensively investigated in recent years due to its multiple biological responses. In this review, the function of GPER in aging-related diseases represented by vascular diseases, and neurological disorders were discussed. Apart from that, activation of GPER was also found to renovate the aging brain characterized by memory decline, but in a manner different from another two nuclear estrogen receptors estrogen receptor (ER)α and ERβ. This salutary effect would be better clarified from the aspects of synaptic inputs and transmission. Furthermore, we carefully described molecular mechanisms underpinning GPER-mediated effects. This review would update our understanding of GPER in the aging process. Targeting GPER may represent a promising strategy in the aging-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhe Yin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
11
|
Notas G, Panagiotopoulos A, Vamvoukaki R, Kalyvianaki K, Kiagiadaki F, Deli A, Kampa M, Castanas E. ERα36-GPER1 Collaboration Inhibits TLR4/NFκB-Induced Pro-Inflammatory Activity in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22147603. [PMID: 34299224 PMCID: PMC8303269 DOI: 10.3390/ijms22147603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is important for the initiation and progression of breast cancer. We have previously reported that in monocytes, estrogen regulates TLR4/NFκB-mediated inflammation via the interaction of the Erα isoform ERα36 with GPER1. We therefore investigated whether a similar mechanism is present in breast cancer epithelial cells, and the effect of ERα36 expression on the classic 66 kD ERα isoform (ERα66) functions. We report that estrogen inhibits LPS-induced NFκB activity and the expression of downstream molecules TNFα and IL-6. In the absence of ERα66, ERα36 and GPER1 are both indispensable for this effect. In the presence of ERα66, ERα36 or GPER1 knock-down partially inhibits NFκB-mediated inflammation. In both cases, ERα36 overexpression enhances the inhibitory effect of estrogen on inflammation. We also verify that ERα36 and GPER1 physically interact, especially after LPS treatment, and that GPER1 interacts directly with NFκB. When both ERα66 and ERα36 are expressed, the latter acts as an inhibitor of ERα66 via its binding to estrogen response elements. We also report that the activation of ERα36 leads to the inhibition of breast cancer cell proliferation. Our data support that ERα36 is an inhibitory estrogen receptor that, in collaboration with GPER1, inhibits NFκB-mediated inflammation and ERα66 actions in breast cancer cells.
Collapse
Affiliation(s)
- George Notas
- Correspondence: ; Tel.: +30-2810-3945-56; Fax: +30-2810-3945-81
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yan H, Qian G, Yang R, Luo Z, Wang X, Xie T, Zhao X, Shan J. Huanglong Antitussive Granule Relieves Acute Asthma Through Regulating Pulmonary Lipid Homeostasis. Front Pharmacol 2021; 12:656756. [PMID: 33967801 PMCID: PMC8103164 DOI: 10.3389/fphar.2021.656756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Asthma is a respiratory disease with chronic airway inflammatory, and individuals with asthma exacerbations is one of the most frequent causes of hospitalization. Huanglong antitussive granule (HL Granule), a Chinese proprietary herbal medicine, has been proved to be effective in the clinical treatment of pulmonary disease. This study is devoted to the pharmacodynamics of HL Granule in acute asthma and the possible mechanism from the perspective of lipidomics. Methods: Mice were divided into four groups, control group, acute asthma model group, HL Granule treatment and montelukast sodium treatment group. Acute asthma was induced by ovalbumin (OVA). Histopathology, pulmonary function and enzyme linked immunosorbent assay (ELISA) were used to validated model and effect of HL Granule. Lipids were detected by ultra-high-performance liquid chromatography coupled to hybrid Quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS) and identified by MS-DAIL and built-in Lipidblast database. Differentially expressed lipids recalled in HL Granule treatment group were extracted for heatmap, enrichment analysis and correlation analysis. Results: HL Granule was effective in decreasing airway hyperresponsiveness (AHR), airway inflammatory and the levels of IL-4 and IL-5. A total of 304 and 167 lipids were identified in positive and negative ion mode, respectively. Among these, 104 and 73 lipids were reserved in HL Granule group (FDR < 0.05), including acylcarnitine (ACar), fatty acid (FA), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), diglyceride (DG), triglyceride (TG), sphingomyelin (SM) and ceramide (Cer). Furthermore, 118 and 273 correlations among 47 and 96 lipids in the positive and negative were observed, with ether-linked phosphatidylethanolamine (PEe) and phosphatidylcholine (PCe) (FDR < 0.001, Spearman correlation coefficient r 2 > 0.75). Conclusion: HL Granule might improve pulmonary lipid homeostasis and could be used as an alternative or supplementary therapy in clinical for the treatment of asthma.
Collapse
Affiliation(s)
- Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiying Qian
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Rui Yang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianzheng Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Yu W, Ye T, Ding J, Huang Y, Peng Y, Xia Q, Cuntai Z. miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease. Front Pharmacol 2021; 12:551839. [PMID: 33953665 PMCID: PMC8089484 DOI: 10.3389/fphar.2021.551839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
Background: Cigarette smoke exposure (CSE) is a major cause of chronic obstructive pulmonary disease (COPD). The smoke disrupts cell-cell adhesion by inducing epithelial barrier damage to the tight junction (TJ) proteins. Even though the inflammatory mechanism of chemokine (C-C motif) ligand 3 (CCL3) in COPD has gained increasing attention in the research community, however, the underlying signaling pathway, remains unknown. Objectives: To identify the relationship of CCL3 in the pathogenesis of tight junction impairment in COPD and the pathway through which CSE causes damage to TJ in COPD via CCL3, both in vivo and in vitro. Methods: We screened the inflammatory factors in the peripheral blood mononuclear cells (PBMCs) from healthy controls and patients at each GOLD 1-4 stage of chronic obstructive pulmonary disease. RT-PCR, western blot, and ELISA were used to detect the levels of CCL3, ZO-1, and occludin after Cigarette smoke exposure. Immunofluorescence was applied to examine the impairment of the TJs in 16-HBE and A549 cells. The reverse assay was used to detect the effect of a CCR5 antagonist (DAPTA) in COPD. In the CSE-induced COPD mouse model, H&E staining and lung function tests were used to evaluate the pathological and physical states in each group. Immunofluorescence was used to assess the impairment of TJs in each group. ELISA and RT-PCR were used to examine the mRNA or protein expression of CCL3 or miR-4456 in each group. Results: The in vivo and in vitro results showed that CCL3 expression was increased in COPD compared with healthy controls. CCL3 caused significant injury to TJs through its C-C chemokine receptor type 5 (CCR5), while miR-4456 could suppress the effect of CCL3 on TJs by binding to the 3′-UTR of CCL3. Conclusion: miR-4456/CCL3/CCR5 pathway may be a potential target pathway for the treatment of COPD.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Ye
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ding
- Urology Department of Xin Hua Hospital, Xin Hua Hospital Affliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yi Huang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Peng
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Xia
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Cuntai
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Yuan W, Chen Y, Zhou Y, Bao K, Yu X, Xu Y, Zhang Y, Zheng J, Jiang G, Hong M. Formononetin attenuates atopic dermatitis by upregulating A20 expression via activation of G protein-coupled estrogen receptor. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113397. [PMID: 32971159 DOI: 10.1016/j.jep.2020.113397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a complex skin disease with highly heterogeneous inflammation, which ranks among the largest component of the nonfatal diseases worldwide. The medications currently used to treat AD primarily include antihistamines, vitamin D and anti-inflammatory drugs, etc. But, the usage of these drugs is usually accompanied by various side-effects. Formononetin (FMN), a natural active ingredient of Astragalus membranaceus (Fisch.) Bunge, decreases the AD relapse rate, reduces recurring severity incidence and resists the inflammation in the initial stage of AD. However, the underlying mechanism of FMN on repressing the development of AD is still unknown. AIM OF THE STUDY To investigate the potential mechanism of FMN on relieving the initial responses of AD and elucidate its possible therapeutic targets in vivo and in vitro. MATERIALS AND METHODS A fluorescein isothiocyanate (FITC)-induced mouse model of the initial stage of AD was established in vivo. Human keratinocytes (HaCaT) cells were co-stimulated with tumor necrosis factor alpha (TNF-α) and polyinosinic-polycytidylic acid (Poly(I:C)) in vitro. The production of thymic stromal lymphopoietin (TSLP) and immunoglobulin E (IgE) were detected by enzyme-linked immunosorbnent assay (ELISA). The protein expression was measured through immunohistochemistry and western blotting. The mRNA expression was examined by real-time quantitative polymerase chain reaction (RT-qPCR). The impact of TNF-α-induced protein 3 (TNFAIP3/A20) was reflected using its small interfering RNA (siRNA). The role of G protein-coupled estrogen receptor (GPER) was explored using its agonist (G1), antagonist (G15) or siRNA (siGPER) in vitro. RESULTS We found that FMN upregulated the expression of A20 protein and mRNA in the initial stage of AD model, especially in the epithelial region of ear tissue, and inhibited the production of TSLP simultaneously. Consistently, FMN significantly upregulated A20 protein and its mRNA expression while reduced TSLP protein and its mRNA expression in vitro, and this effect could be antagonized by A20 siRNA (siA20). Moreover, compared with PPT (ERα agonist) and DPN (ERβ agonist), G1 could significantly increase the expression of A20. In addition, compared with MPP (ERα antagonist) and PHTPP (ERβ antagonist), G15 could markedly reduce the expression of A20. Furthermore, the effects of FMN on A20 were interfered by siGPER and G15 in vitro and in vivo. CONCLUSIONS These results demonstrated that FMN attenuated AD by upregulating A20 expression via activation of GPER. This new strategy might have effective therapeutic potential for AD and other inflammatory disorders.
Collapse
Affiliation(s)
- Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215003, China.
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xuerui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yifan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Guorong Jiang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215003, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Yi L, Cui J, Wang W, Tang W, Teng F, Zhu X, Qin J, Wuniqiemu T, Sun J, Wei Y, Dong J. Formononetin Attenuates Airway Inflammation and Oxidative Stress in Murine Allergic Asthma. Front Pharmacol 2020; 11:533841. [PMID: 33013383 PMCID: PMC7500463 DOI: 10.3389/fphar.2020.533841] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma has been considered as a respiratory disorder with pathological features of airway inflammation and remodeling, which involves oxidative stress. Formononetin (FMT) is a bioactive isoflavone obtained from Chinese herb Radix Astragali, and has been reported to have notable anti-inflammatory and antioxidant effects in several diseases. The purpose of our study was to elaborate the effects of FMT on asthma and the underlying mechanisms. To establish allergic asthma model, BALB/c mice were given ovalbumin (OVA) sensitization and challenge, treated with FMT (10, 20, 40 mg/kg) or dexamethasone (2 mg/kg). The effects of FMT on lung inflammation and oxidative stress were assessed. In OVA-induced asthmatic mice, FMT treatments significantly ameliorated lung function, alleviated lung inflammation including infiltration of inflammatory cells, the elevated levels of interleukin (IL)-4, IL-5, and IL-13, immunoglobulin (Ig) E, C-C motif chemokine ligand 5 (CCL5, also known as RANTES), CCL11 (also called Eotaxin-1), and IL-17A. In addition, FMT treatments eminently blunted goblet cell hyperplasia and collagen deposition, and remarkably reduced oxidative stress as displayed by decreased reactive oxygen species (ROS), and increased superoxide diamutase (SOD) activity. Furthermore, to clarify the potential mechanisms responsible for the effects, we determined the inflammation and oxidation-related signaling pathway including nuclear factor kappa β (NF-κB), c-Jun N-terminal kinase (JNK), and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). FMT treatments appeared to dramatically inhibit the activation of NF-κB and JNK, significantly elevated the expression of heme oxygenase 1 (HO-1) but failed to activate expression of Nrf2. In conclusion, our study suggested that FMT had the therapeutic effects in attenuating airway inflammation and oxidative stress in asthma.
Collapse
Affiliation(s)
- La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Xu YD, Yang YQ, Zheng YJ. G protein-coupled estrogen receptor, a potential therapeutic target of asthma probed by Chinese herb. J Leukoc Biol 2020; 108:13-16. [PMID: 32480427 DOI: 10.1002/jlb.3ce0420-133r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/11/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Discussion on the identification of GPER as a potential therapeutic target for asthma through Chinese herb-driven drug discovery strategy.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Juan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|