1
|
Şen Ö, Pucci C, Ciofani G. Monitoring Cell Cytoskeleton Variations upon Piezoelectric Stimulation: Implications for the Immune System. Methods Mol Biol 2024; 2748:73-83. [PMID: 38070108 DOI: 10.1007/978-1-0716-3593-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Piezoelectric stimulation can have a significant impact on different cellular functions with possible applications in several fields, such as regenerative medicine, cancer therapy, and immunoregulation. For example, piezoelectric stimulation has been shown to modulate cytoskeleton variations: the implications of this effect range from the regulation of migration and invasion of cancer cells to the activation of pro- or anti-inflammatory phenotypes in immune cells. In this chapter, we will present different methodologies to evaluate cytoskeleton variations, focusing on modifications on f-/g-actin ratio and on the migration and invasion ability of tumor cells.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy.
| |
Collapse
|
2
|
Carestia A, Godin LC, Jenne CN. Step up to the platelet: Role of platelets in inflammation and infection. Thromb Res 2023; 231:182-194. [PMID: 36307228 DOI: 10.1016/j.thromres.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Platelets are anucleated cells derived from megakaryocytes that are primarily responsible for hemostasis. However, in recent years, these cytoplasts have become increasingly recognized as immune cells, able to detect, interact with, and kill pathogens. As platelets are involved in both immunity and coagulation, they have a central role in immunothrombosis, a physiological process in which immune cells induce the formation of microthrombi to both prevent the spread of pathogens, and to help facilitate clearance. In this review, we will highlight the role of platelets as key players in the inflammatory and innate immune response against bacterial and viral infection, including direct and indirect interactions with pathogens and other immune cells.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Laura C Godin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
3
|
Wirestam L, Arve S, Linge P, Bengtsson AA. Neutrophils-Important Communicators in Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Front Immunol 2019; 10:2734. [PMID: 31824510 PMCID: PMC6882868 DOI: 10.3389/fimmu.2019.02734] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are two autoimmune diseases that can occur together or separately. Insights into the pathogenesis have revealed similarities, such as development of autoantibodies targeting subcellular antigens as well as a shared increased risk of cardiovascular morbidity, potentially due to mutual pathologic mechanisms. In this review, we will address the evidence implicating neutrophils in the pathogenesis of these conditions, highlighting their shared features. The neutrophil is the most abundant leukocyte, recognized for its role in infectious and inflammatory diseases, but dysregulation of neutrophil effector functions, including phagocytosis, oxidative burst and formation of neutrophil extracellular traps (NETs) may also contribute to an autoimmune process. The phenotype of neutrophils in SLE and APS differs from neutrophils of healthy individuals, where neutrophils in SLE and APS are activated and prone to aggregate. A specific subset of low-density neutrophils with different function compared to normal-density neutrophils can also be found within the peripheral blood mononuclear cell (PBMC) fraction after density gradient centrifugation of whole blood. Neutrophil phagocytosis is required for regular clearance of cell remnants and nuclear material. Reactive oxygen species (ROS) released by neutrophils during oxidative burst are important for immune suppression and impairment of ROS production is seen in SLE. NETs mediate pathology in both SLE and APS via several mechanisms, including exposure of autoantigens, priming of T-cells and activation of autoreactive B-cells. NETs are also involved in cardiovascular events by forming a pro-thrombotic scaffolding surface. Lastly, neutrophils communicate with other cells by producing cytokines, such as Interferon (IFN) -α, and via direct cell-cell contact. Physiological neutrophil effector functions are necessary to prevent autoimmunity, but in SLE and APS these are altered.
Collapse
Affiliation(s)
- Lina Wirestam
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sabine Arve
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Petrus Linge
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Section of Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Grazioli S, Pugin J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front Immunol 2018; 9:832. [PMID: 29780380 PMCID: PMC5946030 DOI: 10.3389/fimmu.2018.00832] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Over the recent years, much has been unraveled about the pro-inflammatory properties of various mitochondrial molecules once they are leaving the mitochondrial compartment. On entering the cytoplasm or the extracellular space, mitochondrial DAMPs (also known as mitochondrial alarmins) can become pro-inflammatory and initiate innate and adaptive immune responses by activating cell surface and intracellular receptors. Current evidence indicates that uncontrolled and excessive release of mitochondrial DAMPs is associated with severity, has prognosis value in human diseases, and contributes to the dysregulated process observed in numerous inflammatory and autoimmune conditions, as well as in ischemic heart disease and cancer. Herein, we review that the expanding research field of mitochondrial DAMPs in innate immune responses and the current knowledge on the association between mitochondrial DAMPs and human diseases.
Collapse
Affiliation(s)
- Serge Grazioli
- Pediatric Intensive Care Unit, Department of Pediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Pugin
- Intensive Care Unit, Department of Anesthesiology, Faculty of Medicine, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Boulaftali Y, Mawhin M, Jandrot‐Perrus M, Ho‐Tin‐Noé B. Glycoprotein VI in securing vascular integrity in inflamed vessels. Res Pract Thromb Haemost 2018; 2:228-239. [PMID: 30046725 PMCID: PMC5974920 DOI: 10.1002/rth2.12092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Glycoprotein VI (GPVI), the main platelet receptor for collagen, has been shown to play a central role in various models of thrombosis, and to be a minor actor of hemostasis at sites of trauma. These observations have made of GPVI a novel target for antithrombotic therapy, as its inhibition would ideally combine efficacy with safety. Nevertheless, recent studies have indicated that GPVI could play an important role in preventing bleeding caused by neutrophils in the inflamed skin and lungs. Remarkably, there is evidence that the GPVI-dependent hemostatic function of platelets at the acute phase of inflammation in these organs does not involve aggregation. From a therapeutic perspective, the vasculoprotective action of GPVI in inflammation suggests that blocking of GPVI might bear some risks of bleeding at sites of neutrophil infiltration. In this review, we summarize recent findings on GPVI functions in inflammation and discuss their possible clinical implications and applications.
Collapse
Affiliation(s)
- Yacine Boulaftali
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Marie‐Anne Mawhin
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Martine Jandrot‐Perrus
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Benoît Ho‐Tin‐Noé
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| |
Collapse
|
6
|
Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2017; 371:567-576. [PMID: 29178039 PMCID: PMC5820397 DOI: 10.1007/s00441-017-2727-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are well known for their role in infection and inflammatory disease and are first responders at sites of infection or injury. Platelets have an established role in hemostasis and thrombosis and are first responders at sites of vascular damage. However, neutrophils are increasingly recognized for their role in thrombosis, while the immunemodulatory properties of platelets are being increasingly studied. Platelets and neutrophils interact during infection, inflammation and thrombosis and modulate each other’s functions. This review will discuss the consequences of platelet–neutrophil interactions in infection, thrombosis, atherosclerosis and tissue injury and repair.
Collapse
|
7
|
Portman MA, Navarro SL, Bruce ME, Lampe JW. Soy isoflavone intake is associated with risk of Kawasaki disease. Nutr Res 2016; 36:827-34. [PMID: 27440537 PMCID: PMC4987172 DOI: 10.1016/j.nutres.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 01/31/2023]
Abstract
Kawasaki disease (KD) is an acute vasculitis affecting children. Incidence of KD varies according to ethnicity and is highest in Asian populations. Although genetic differences may explain this variation, dietary or environmental factors could also be responsible. The objectives of this study were to determine dietary soy and isoflavone consumption in a cohort of KD children just before disease onset and their mothers' intake during pregnancy and nursing. We tested the hypothesis that soy isoflavone consumption is associated with risk of KD in US children, potentially explaining some of the ethnic-cultural variation in incidence. We evaluated soy food intake and isoflavone consumption in nearly 200 US KD cases and 200 age-matched controls using a food frequency questionnaire for children and in their mothers. We used a logistic regression model to test the association of isoflavones and KD. Maternal surveys on soy intake during pregnancy and nursing showed no significant differences in isoflavone consumption between groups. However, we identified significantly increased KD risk in children for total isoflavone (odds ratio [OR], 2.33; 95% confidence interval [CI], 1.37-3.96) and genistein (OR, 2.46; 95% CI, 1.46-4.16) intakes, when comparing high soy consumers vs nonconsumers. In addition, significantly increased KD risk occurred in Asian-American children with the highest consumption (total isoflavones: OR, 7.29; 95% CI, 1.73-30.75; genistein: OR, 8.33; 95% CI, 1.92-36.24) compared to whites. These findings indicate that childhood dietary isoflavone consumption, but not maternal isoflavone intake during pregnancy and nursing, relates to KD risk in an ethnically diverse US population.
Collapse
Affiliation(s)
- Michael A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, WA, USA; Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Sandi L Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret E Bruce
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Nakahira K, Hisata S, Choi AMK. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal 2015; 23:1329-50. [PMID: 26067258 PMCID: PMC4685486 DOI: 10.1089/ars.2015.6407] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. RECENT ADVANCES Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. CRITICAL ISSUES Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. FUTURE DIRECTIONS Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid.
Collapse
Affiliation(s)
- Kiichi Nakahira
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Shu Hisata
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Augustine M K Choi
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
9
|
El-Menshawy N, Eissa M, Farag R, Aboalyazed A. CD235a (Glycophorin-A) Is the Most Predictive Value Among Different Circulating Cellular Microparticles in Thrombocytopenic Human Immunodeficiency Virus Type 1. J Clin Lab Anal 2015; 30:235-43. [PMID: 25716234 DOI: 10.1002/jcla.21842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was conducted to assess different cellular microparticles (MPs) in thrombocytopenic human immunodeficiency virus type 1 and their significance as disease activity markers. METHODS Thirty-five thrombocytopenic human immunodeficiency diseases and 25 healthy controls with matched age and sex were selected. Viral load was quantitated by COBAS real-time polymerase reaction (PCR) assessment of absolute T-cell subsets CD4, CD8 as a disease progress marker. Platelet MPs, platelet-derived monocyte MPs (CD42a, CD61), erythrocyte MP (CD235a), monocytic MP (CD14), and platelet activity MPs (CD62P, PAC-1) were assessed by multicolor flow cytometry FACSCalibur, while platelet functions were assessed by platelet function analyzer (PFA-100). CD42a, CD61, and platelet activity index represented by PAC-1 and CD62. RESULTS P-selectin in HIV-infected patient samples were significantly greater (P < 0.001) than among controls. There was a negative correlation between the proportion of PAC-1 and CD62 P-selectin-positive MPs and levels of CD4(+) T-cell counts (r = -0.403, P = 0.016; r = -0.438, P = 0.008), respectively. There was a negative correlation between collagen-ADP and levels of CD4(+) T-cell counts (r = -0.368, P = 0.03). There was a significant high expression level of CD14 monocyte MPs in patients than controls (P < 0.0001), overexpression of CD235a (P < 0.0001), and no correlation between CD14 and CD4, whereas there was a significant negative correlation with CD235a (r = -0.394, P = 0.019). A linear regression analysis of CD4 as a disease progression marker with other variable indicators in HIV patients showed that CD235a could be the most sensitive predictor similar to CD4. CONCLUSION Different cellular MPs and platelets activated in HIV patients could have a role in thrombotic events in these patients.
Collapse
Affiliation(s)
- Nadia El-Menshawy
- Clinical Pathology Department, Hematology Unit, Mansoura Medical School, Mansoura University, Egypt
| | - Mohammed Eissa
- Faculty of Medicine, Clinical Pathology Department, Zagazig University, Egypt.,College of Medicine, Pathology Department, King Khaled University, Abha, KSA
| | - Raghada Farag
- Tropical Medical Department, Mansoura Medical School, Mansoura University, Egypt
| | - Ahmed Aboalyazed
- Community Medicine Department, Mansoura Medical School, Mansoura University, Egypt
| |
Collapse
|
10
|
Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 2015; 5:678. [PMID: 25610439 PMCID: PMC4285099 DOI: 10.3389/fimmu.2014.00678] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022] Open
Abstract
There is now a large body of evidence that platelets are central actors of inflammatory reactions. Indeed, platelets play a significant role in a variety of inflammatory diseases. These diseases include conditions as varied as atherosclerosis, arthritis, dermatitis, glomerulonephritis, or acute lung injury. In this context, one can note that inflammation is a convenient but imprecise catch-all term that is used to cover a wide range of situations. Therefore, when discussing the role of platelets in inflammation, it is important to clearly define the pathophysiological context and the exact stage of the reaction. Inflammatory reactions are indeed multistep processes that can be either acute or chronic, and their sequence can vary greatly depending on the situation and organ concerned. Here, we focus on how platelets contribute to inflammatory reactions involving recruitment of neutrophils and/or macrophages. Specifically, we review past and recent data showing that platelets intervene at various stages of these reactions to regulate parameters such as endothelial permeability, the recruitment of neutrophils and macrophages and their effector functions, as well as inflammatory bleeding. The mechanisms underlying these various modulating effect of platelets are also discussed.
Collapse
Affiliation(s)
- Angèle Gros
- Université Paris Diderot, Sorbonne Paris Cité , Paris , France ; Unit 1148, Laboratory for Vascular Translational Science, INSERM , Paris , France
| | - Véronique Ollivier
- Université Paris Diderot, Sorbonne Paris Cité , Paris , France ; Unit 1148, Laboratory for Vascular Translational Science, INSERM , Paris , France
| | - Benoît Ho-Tin-Noé
- Université Paris Diderot, Sorbonne Paris Cité , Paris , France ; Unit 1148, Laboratory for Vascular Translational Science, INSERM , Paris , France
| |
Collapse
|
11
|
Maître B, Magnenat S, Heim V, Ravanat C, Evans RJ, de la Salle H, Gachet C, Hechler B. The P2X1 receptor is required for neutrophil extravasation during lipopolysaccharide-induced lethal endotoxemia in mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:739-49. [PMID: 25480563 DOI: 10.4049/jimmunol.1401786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP is becoming increasingly recognized as an important regulator of inflammation. However, the known repertoire of P2 receptor subtypes responsible for the proinflammatory effects of ATP is sparse. We looked at whether the P2X1 receptor, an ATP-gated cation channel present on platelets, neutrophils, and macrophages, participates in the acute systemic inflammation provoked by LPS. Compared with wild-type (WT) mice, P2X1(-/-) mice displayed strongly diminished pathological responses, with dampened neutrophil accumulation in the lungs, less tissue damage, reduced activation of coagulation, and resistance to LPS-induced death. P2X1 receptor deficiency also was associated with a marked reduction in plasma levels of the main proinflammatory cytokines and chemokines induced by LPS. Interestingly, macrophages and neutrophils isolated from WT and P2X1(-/-) mice produced similar levels of proinflammatory cytokines when stimulated with LPS in vitro. Intravital microscopy revealed a defect in LPS-induced neutrophil emigration from cremaster venules into the tissues of P2X1(-/-) mice. Using adoptive transfer of immunofluorescently labeled neutrophils from WT and P2X1(-/-) mice into WT mice, we demonstrate that the absence of the P2X1 receptor on neutrophils was responsible for this defect. This study reveals a major role for the P2X1 receptor in LPS-induced lethal endotoxemia through its critical involvement in neutrophil emigration from venules.
Collapse
Affiliation(s)
- Blandine Maître
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Stéphanie Magnenat
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Véronique Heim
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Catherine Ravanat
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Richard J Evans
- Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Henri de la Salle
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Christian Gachet
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| | - Béatrice Hechler
- Unité Mixte de Recherche S949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France; and
| |
Collapse
|
12
|
Jacob F, Novo CP, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 2013; 9:285-306. [PMID: 23404828 PMCID: PMC3757148 DOI: 10.1007/s11302-013-9357-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.
Collapse
Affiliation(s)
- Fenila Jacob
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claudina Pérez Novo
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Yamanaka T, Sakamoto H, Nakagawa T, Tanaka S, Matsumoto K, Ueno M. An immunohistochemical study of human platelets using a rabbit antibody against H18-K24 of apolipoprotein CIII (HATKTAK). Pathol Int 2013; 63:398-407. [PMID: 23957915 DOI: 10.1111/pin.12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/25/2013] [Indexed: 11/28/2022]
Abstract
H18-K24 of human apolipopotein CIII (Apo CIII) (HATKTAK) is an activator of the macromolecular activators of phagocytosis from platelets (MAPPs). Using a rabbit antibody against HATKTAK, we performed an immunohistochemical study of human platelets. Indirect ELISA showed that this antibody reacts with Apo CIII-derived peptides with a C-terminal of HATKTAK, but not with Apo CIII. Immunoelectron microscopy revealed that reaction of anti-HATKTAK antibody occurred in the pseudopods of activated platelets. In blood coagula produced from the peripheral blood and formalin-fixed after various incubation periods, reaction of this antibody with platelets appeared rapidly with a peak at 3 to 6 h of incubation, and then diminished gradually. Leukocytes in the blood coagula were stained strongly positive. In tissue sections, fresh thrombi and hemorrhages with slight fibrin formation revealed a positive response of platelets to anti-HATKTAK antibody, whereas older ones with leukocytic infiltration, fibrin formation and organization did not. In addition to platelets, endothelial cells and leukocytes were stained positive by anti-HATKTAK antibody. All of the positive reactions by anti-HATKTAK antibody disappeared or diminished by co-incubation with HATKTAK. In conclusion, the anti-HATKTAK antibody reveals platelets during the early phase of activation.
Collapse
Affiliation(s)
- Takao Yamanaka
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 2013; 17:1176-84. [PMID: 23810443 DOI: 10.1016/j.intimp.2013.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/20/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
The manifestation of platelet 'satallitism' around neutrophils in whole blood is a long acknowledged phenomenon [1]. Circulating platelet-neutrophil complexes (PNC) occur in a diverse range of inflammatory disorders and infections that affect numerous organs of the body. Animal models have revealed that the formation of PNC is required for the recruitment of neutrophils to inflamed tissue, since platelets 'prime' neutrophils for efficient adhesion to vascular endothelium via the up-regulation of integrins and enhanced responsiveness to chemokines (Fig. 1). Perhaps surprisingly, the surface contact between platelets and neutrophils additionally enhances other neutrophil functions, such as chemotaxis that is required for migration into tissues, trans-cellular production of eicosanoids, phagocytosis and trapping of pathogens, increased respiratory burst leading to the production of reactive oxygen species (ROS), and modulation of neutrophil apoptosis (Fig. 1). Platelet P-selectin appears to have a particular role in enhancing the majority of these activities, and the influence of platelet P-selectin is not therefore confined to the initial rolling events in the process of neutrophil extravasation.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | | |
Collapse
|
15
|
Aktan Í, Dunkel B, Cunningham F. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Vet Immunol Immunopathol 2013; 152:209-17. [DOI: 10.1016/j.vetimm.2012.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
|
16
|
Sakamoto H, Wu B, Nagai Y, Tanaka S, Onodera M, Ogawa T, Ueno M. Platelet high-density lipoprotein activates transferrin-derived phagocytosis activators, MAPPs, following thrombin digestion. Platelets 2011; 22:371-9. [PMID: 21194399 DOI: 10.3109/09537104.2010.533797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Macromolecular activators of phagocytosis from platelets (MAPPs), transferrin-derived phagocytosis activators released from platelets, activate leukocytic phagocytosis via Fcγ receptors. It has been found that MAPPs can be prepared using stored platelets or their lysate. Using this artificial MAPP production system, it has been found that they can be produced from precursors (tetrameric and dimeric transferrins) following reaction with a low-molecular-weight (LMW) activator of MAPPs, which is liberated from a high-molecular-weight activator of MAPP (HMW activator) by reaction with thrombin. In this study, the HMW activator in platelet lysate was characterized by assaying phagocytosis of washed neutrophils. In an ultracentrifugation study of the platelet lysate, HMW activator activity was observed in the fraction corresponding to the density of high-density lipoprotein (HDL). The activity was observed in the apolipoproteins obtained from the HDL fraction. Among the apolipoproteins tested only apolipoprotein CIII showed the activity to produce MAPP in vitro. Affinity chromatography of the apolipoproteins from the HDL fraction of the platelet lysate using an anti-apolipoprotein CIII column revealed that the substance that binds with the antibody showed MAPP-forming activity. In a gel filtration study of thrombin-treated apolipoprotein CIII, a peak of LMW activator activity was observed for fractions with a molecular size smaller than that of apolipoprotein CIII. Finally, MAPP-forming activity of HDL obtained from the plasma was examined. MAPP was formed only when delipidized HDL was used. In conclusion, it is suggested that platelet HDL is the HMW activator and that this activation is achieved via apolipoprotein CIII after thrombin reaction in platelets.
Collapse
Affiliation(s)
- Haruhiko Sakamoto
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
18
|
Neves AP, Keller A, Trein CR, Möller G, Jobim MIM, Castilho LFF, Cardoso MRDI, Leibold W, Zerbe H, Klug E, Gregory RM, Mattos RC. Use of leukocytes as treatment for endometritis in mares experimentally infected with Streptococcus equi subsp. zooepidemicus. Anim Reprod Sci 2007; 97:314-22. [PMID: 16488562 DOI: 10.1016/j.anireprosci.2006.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 01/17/2006] [Indexed: 11/22/2022]
Abstract
This study compared four treatments for bacterial endometritis in mares experimentally infected with Streptococcus zooepidemicus. Twenty-five mares were used, 20 resistant and five susceptible to endometritis. Mares would be in estrus when infected. Twenty-four hours after inoculation, clinical, bacteriological and cytological examinations were performed and repeated until the first occurrence: negative cytology and no Streptococcus growth or the seventh day post-infection. All mares showed clinical signs of endometritis and were assigned to one of the following treatments: (1) intrauterine infusion of fresh leukocytes; (2) intrauterine infusion of frozen-thawed leukocytes; (3) intrauterine infusion of lysed leukocytes; (4) intrauterine infusion of recombinant human interleukin-8 (rhIL-8); (5) control. Mares were submitted to all treatments, with at least a 14-day interval between treatments in a Latin square design. Treatment did not affect (P=0.121) time needed for resistant mares to eliminate bacteria. Time needed for elimination of bacteria was similar in susceptible mares treated with fresh and frozen leukocytes (P=0.333). Susceptible mares treated with frozen leukocytes also did not differ from those treated with lysed leukocytes (P=0.227) for time to eliminate bacteria, but were significantly different (P>0.02) from those treated with rhIL-8 and control. In resistant mares, physical clearance ability was probably the responsible for bacterial elimination. Intrauterine infusions in susceptible mares with viable or lysed leukocytes associated or not to opsonizing factors, reduced the time to elimination of bacteria. Infusions with bactericidal effect (functional neutrophils and granules) was likely effective and responsible for the more rapid elimination of bacteria in susceptible mares.
Collapse
Affiliation(s)
- Adriana Pires Neves
- REPROLAB, Departamento de Medicina Animal, FAVET, UFRGS, Av. Bento Gonçalves 9090, 91540-000 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Miyabe K, Sakamoto N, Wu YH, Mori N, Sakamoto H. Effects of platelet release products on neutrophilic phagocytosis and complement receptors. Thromb Res 2005; 114:29-36. [PMID: 15262482 DOI: 10.1016/j.thromres.2004.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 04/06/2004] [Accepted: 04/14/2004] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Platelets enhance leukocytic phagocytosis via the action of ATP and ADP in platelet release products (PRPr). The present study was designed to clarify the type of complements and complement receptors that are involved in phagocytosis activation by PRPr, ATP and ADP. MATERIALS AND METHODS Human peripheral blood was used as the source of neutrophils and platelets. The supernatant of the platelet suspension after simulation was used as PRPr. The effects of PRPr, ATP, ADP, and other substances on neutrophilic phagocytosis, rosette formation and expression of several antigens were investigated. For the markers of neutrophilic phagocytosis and rosette formation, IgM-sensitized sheep red blood cells (SRBC) were treated with diluted human serum (EAC) or purified complements (C1, C4, C2 and C3) (EAC3b) followed by C3 inactivation (EAC3bi). The expressions of CD11b, CD11c, CD18, and CD35 were evaluated using a flow cytometer. RESULTS Neutrophilic phagocytosis of EAC and EAC3bi was enhanced by PRPr, ATP, and ADP, whereas this phagocytosis activation was abolished by antibodies against CD11b and CD18. Neutrophil rosette formation with EAC3bi was increased by ATP and ADP. Flow cytometry revealed that the expressions of CD11b and CD35 on neutrophils were increased by PRPr, but not by ATP and ADP. The component in PRPr, responsible for the increase in expressions of these antigens, could not be identified. CONCLUSION PRPr increases the neutrophilic phagocytosis of complement-coated particles through the action of ATP and ADP by increasing the binding avidity with iC3b, but not the number of Mac-1 (CD11b/CD18).
Collapse
Affiliation(s)
- Kazunori Miyabe
- Department of Otorhinolaryngology, Faculty of Medicine, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
21
|
Chlopicki S, Olszanecki R, Janiszewski M, Laurindo FRM, Panz T, Miedzobrodzki J. Functional role of NADPH oxidase in activation of platelets. Antioxid Redox Signal 2004; 6:691-8. [PMID: 15242549 DOI: 10.1089/1523086041361640] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Involvement of phagocyte NADPH oxidase in host defense response is well established. In contrast, little is known about the functional role of NADPH oxidase in platelets. In this study, we analyzed involvement of platelet NADPH oxidase in aggregation of human platelets and in amplification of production of reactive oxygen species (ROS) by activated human neutrophils. Apocynin, a known NADPH oxidase inhibitor, as well as superoxide dismutase mimetic Mn(III)tetrakis(1-methyl-1-pyridyl)porphyrin, inhibited ROS generation by collagen-activated platelets, collagen-induced aggregation of platelets, as well as collagen-induced release of thromboxane B2. These data suggest the key role of intracellular ROS derived from NADPH oxidase in the control of thromboxane A2 (TXA2) production in platelets stimulated by collagen. Apocynin also inhibited thrombin-induced ROS production and thrombin-induced platelet aggregation. Activation of neutrophils with latex resulted in an outburst of ROS that was inhibited by apocynin. ROS production by latex-stimulated platelets was modest and also inhibited by apocynin. However, when a mixture of platelets and neutrophils was stimulated with latex, ROS production was three to six times higher in comparison with activation of neutrophils alone. Platelet-dependent augmentation of neutrophil ROS production was abrogated by TXA2 synthase inhibitor (furegrelate, 1 microM) or by aspirin (300 microM). In summary, NADPH oxidase in platelets seems to play a major role as an intracellular signaling mechanism in the activation of platelets. However, in host defense response involving neutrophils and platelets, platelets enhance ROS production by neutrophils and possibly their cytotoxic potential via the release of TXA2, which in turn in platelets is not affected by the extracellular release of free radicals.
Collapse
Affiliation(s)
- Stefan Chlopicki
- Department of Experimental Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
22
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
23
|
Berg C, Trofast C, Bengtsson T. Platelets induce reactive oxygen species-dependent growth of human skin fibroblasts. Eur J Cell Biol 2003; 82:565-71. [PMID: 14703013 DOI: 10.1078/0171-9335-00344] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A growing amount of evidence suggests that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, regulate intracellular signalling and have a role in cell proliferation. In the present study, we show that platelets increase the mitogenic rate in human fibroblasts and that this effect was inhibited by the intracellular antioxidant N-acetyl-L-cysteine (NAC) and the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). The mitogenic effects of platelets were mimicked by the platelet factors platelet-derived growth factor BB-isoform (PDGF-BB), transforming growth factor beta1 (TGF-beta1) and sphingosine-1-phosphate (S1P). The sphingosine kinase inhibitor DL-threo-dihydrosphingosine (DL-dihydro) abrogated the platelet-induced growth, while antibodies directed against PDGF or TGF-beta had modest effects. Exposure of fibroblasts to platelets, PDGF-BB, TGF-beta1 or S1P caused an extensive intracellular ROS production, measured as changes in dichlorofluorescein fluorescence. This ROS production was totally inhibited by NAC, pyrrolidinethiocarbamate (PDTC), DPI and apocynin. In conclusion, the results presented are indicative of a crucial role of ROS in the platelet-mediated regulation of fibroblast proliferation.
Collapse
Affiliation(s)
- Cecilia Berg
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
24
|
Nimeri G, Majeed M, Elwing H, Ohman L, Wetterö J, Bengtsson T. Oxygen radical production in neutrophils interacting with platelets and surface-immobilized plasma proteins: Role of tyrosine phosphorylation. J Biomed Mater Res A 2003; 67:439-47. [PMID: 14566784 DOI: 10.1002/jbm.a.10081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction between neutrophil granulocytes and platelets is considered to play an important role in the inflammatory process induced by an implanted foreign material. However, the cellular mechanisms involved remain incompletely understood. We used a luminol-dependent chemiluminescence (CL) technique to analyze the generation of reactive oxygen species (ROS) in human neutrophils interacting with different plasma protein-coated surfaces in the presence or absence of unstimulated or stimulated platelets. The role of tyrosine phosphorylation in the regulation of NADPH oxidase activity was evaluated with quantitative fluorescence microscopy and the specific tyrosine kinase inhibitor genistein. We found that the ROS-production is 2 to 3 times higher in neutrophils on immunoglobulin G (IgG)-coated surfaces than in cells interacting with albumin- or fibrinogen-coated surfaces. Incubation with superoxide dismutase and catalase revealed that about 45% of the ROS was released extracellularly on IgG surfaces whereas corresponding values were 90% and 85% in neutrophils interacting with albumin and fibrinogen, respectively. The presence of platelets markedly increased the extracellular generation of ROS, mainly in neutrophils interacting with IgG- or fibrinogen-coated surfaces whereas the intracellular production was only modestly affected. Quantitative fluorescence microscopy of neutrophils stained with FITC-conjugated anti-phosphotyrosine antibodies showed a correlation between tyrosine phosphorylation, cell spreading, and ROS production. Platelets markedly amplified the anti-phosphotyrosine staining on both fibrinogen- and IgG-coated surfaces whereas the low level of tyrosine phosphorylation in neutrophils on albumin-coated surfaces was not further elevated by platelets. Furthermore, the tyrosine kinase inhibitor genistein inhibited both extra- and intracellular ROS production in neutrophils regardless of the presence of platelets. We demonstrate that plasma protein coating and the presence of platelets are crucial for the inflammatory response of adhering neutrophils and that the oxidative response correlates with the extent of tyrosine phosphorylation of proteins in focal contacts.
Collapse
Affiliation(s)
- Ghada Nimeri
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Kälvegren H, Majeed M, Bengtsson T. Chlamydia pneumoniae binds to platelets and triggers P-selectin expression and aggregation: a causal role in cardiovascular disease? Arterioscler Thromb Vasc Biol 2003; 23:1677-83. [PMID: 12842841 DOI: 10.1161/01.atv.0000084810.52464.d5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Evidence linking Chlamydia pneumoniae to atherosclerotic cardiovascular disease is expanding. Platelets are considered to play an essential role in cardiovascular diseases; however, so far platelets have not been associated with an infectious cause of atherosclerosis. This study aims to clarify the interaction between C pneumoniae and platelets and possibly present a novel mechanism in the pathogenesis of atherosclerosis. METHODS AND RESULTS The effects of C pneumoniae on platelet aggregation and secretion were assessed with lumiaggregometry, and the ability of C pneumoniae to bind to platelets and stimulate expression of P-selectin was analyzed with flow cytometry. We found that C pneumoniae, at a chlamydia:platelet ratio of 1:15, adheres to platelets and triggers P-selectin expression after 1 minute and causes an extensive aggregation and ATP secretion after 20 minutes of incubation. Inhibition of glycoprotein IIb/IIIa with Arg-Gly-Asp-Ser or abciximab markedly reduced C pneumoniae-induced platelet aggregation. Exposure of C pneumoniae to polymyxin B, but not elevated temperature, abolished the stimulatory effects on platelet activation, suggesting that chlamydial lipopolysaccharide has an active role. In contrast, other tested bacteria had no or only moderate effects on platelet functions. CONCLUSIONS Our findings demonstrate a new concept of how C pneumoniae activates platelets and thereby may cause atherosclerosis and thrombotic vascular occlusion.
Collapse
Affiliation(s)
- Hanna Kälvegren
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Sweden.
| | | | | |
Collapse
|
26
|
Wetterö J, Askendal A, Tengvall P, Bengtsson T. Interactions between surface-bound actin and complement, platelets, and neutrophils. J Biomed Mater Res A 2003; 66:162-75. [PMID: 12833443 DOI: 10.1002/jbm.a.10591] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin exists as globular (G) monomers or polymeric filaments (F) in the cytoplasm of eukaryotic cells, mediating cell morphologic changes and motility. Large amounts of this protein may be released out to the extracellular compartment during tissue injury, but little is known about its role in biomaterial-related inflammation. We immobilized actin to methylated glass, methylated and aminated silicon, and gold model surfaces and studied the subsequent blood serum deposition and complement activation, generation of reactive oxygen species (ROS), and adhesion and aggregation of neutrophils and platelets. Null ellipsometry showed that approximately one monolayer of G-actin can be immobilized onto the model surfaces and that actin in buffer polymerized on top of this by the addition of K(+) and Mg(2+) ions to form a thicker layer of firmly bound F-actin. After serum incubation, F-actin bound low amounts of anti-complement factor 1q (anti-C1q). Cell responses upon contact with actin-coated surfaces were analyzed by luminol-amplified chemiluminescence, lumi-aggregometry, and fluorescence microscopy. It was shown that surface-triggered aggregation, spreading, and generation of ROS are down-regulated and comparable to the response by adsorbed albumin. However, F-actin on gold surfaces recruited platelets in a C1q-dependent manner. We conclude that in vitro adsorbed actin is a weak complement, platelet, and neutrophil activator, but that F-actin associates with both C1q and platelets.
Collapse
Affiliation(s)
- Jonas Wetterö
- Division of Applied Physics, Department of Physics and Measurement Technology, Biology and Chemistry, Linköping University, SE-581 83 Linköping, Sweden.
| | | | | | | |
Collapse
|
27
|
Wetterö J, Tengvall P, Bengtsson T. Platelets stimulated by IgG-coated surfaces bind and activate neutrophils through a selectin-dependent pathway. Biomaterials 2003; 24:1559-73. [PMID: 12559816 DOI: 10.1016/s0142-9612(02)00543-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood platelets bind rapidly to foreign surfaces and interact with adsorbed proteins and neutrophil granulocytes. We demonstrate by use of luminol-amplified chemiluminescence under stirred and non-stirred conditions that platelets at IgG-coated surfaces amplify the neutrophil extracellular release of reactive oxygen species (ROS). The neutrophil response involved tyrosine phosphorylation, but was only in part induced by neutrophil F(c gamma)-receptor stimulation. The platelet mediated effects were contact-dependent since the respiratory burst was inhibited when the IgG-stimulated platelets were removed by filtration, but not when they were fixed in paraformaldehyde. Bodipyphallacidin-staining of filamentous actin (F-actin) revealed that an actin-dependent platelet adhesion supported the subsequent adhesion and spreading of neutrophils. The neutrophil ROS-response was lowered when the interaction between platelet P-selectin (CD62P) and neutrophil P-selectin glycoprotein ligand-l (PSGL-1 or CD162) was inhibited. The blocking of L-selectin (CD62L) or blocking of the interaction between platelet glycoprotein (Gp) IIb/IIIa and neutrophil complement receptor 3 (CR3) showed no effect. We conclude that platelet activation on immobilized IgG trigger a contact-dependent "frustrated" phagocytosis by neutrophils, associated with a release of toxic ROS.
Collapse
Affiliation(s)
- Jonas Wetterö
- Division of Applied Physics, Department of Physics and Measurement Technology, Biology and Chemistry, Linköping University, SE-581 83 Linköping, Sweden.
| | | | | |
Collapse
|
28
|
Kaneider NC, Egger P, Dunzendorfer S, Wiedermann CJ. Rho-GTPase-dependent platelet-neutrophil interaction affected by HMG-CoA reductase inhibition with altered adenosine nucleotide release and function. Arterioscler Thromb Vasc Biol 2002; 22:1029-35. [PMID: 12067916 DOI: 10.1161/01.atv.0000018306.68268.86] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet activation and aggregation is considered a crucial step in the initiation and aggravation of arterial thrombosis. ADP from activated platelets is recognized as major factor in thrombus formation and is a potent stimulator of oxygen-free radical release from neutrophils. The aim of the present investigation was to determine in vitro the direct effects of statins on ATP and ADP secretion by platelets and its impact on subsequent oxidative burst activity in neutrophils. Human neutrophils and platelets were isolated from peripheral blood. Levels of platelet-derived ATP and ADP were measured by high-performance liquid chromatography, oxygen-free radical release of neutrophils was measured fluorometrically, and chemotaxis experiments were performed. Rho-GTPases were studied by Western blot analysis. Thrombin-activated platelets primed neutrophils for enhanced oxygen-free radical release on triggering with formyl-Met-Leu-Phe, reduced by cerivastatin and simvastatin treatment of platelets. The two statins decreased the amount of adenosine-derivative release in these cells. Rho-GTPases, required for the thrombin signaling in platelets and neutrophils, were decreased after coincubation with statins. Data demonstrate that inhibition of Rho-GTPases by statins inhibit platelet ADP and ATP release and the consecutive augmentation of neutrophil oxygen-free radical release. Statins affect platelet-neutrophil interactions by altering Rho-GTPase-dependent adenosine nucleotide function.
Collapse
Affiliation(s)
- Nicole C Kaneider
- Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
29
|
Nimeri G, Ohman L, Elwing H, Wetterö J, Bengtsson T. The influence of plasma proteins and platelets on oxygen radical production and F-actin distribution in neutrophils adhering to polymer surfaces. Biomaterials 2002; 23:1785-95. [PMID: 11950049 DOI: 10.1016/s0142-9612(01)00305-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that blood cell interactions with artificial surfaces might have deleterious effects on host tissue, however, the mechanisms involved are far from understood. In this study, neutrophil-platelet interaction on uncoated or protein-coated polymer surfaces was investigated. Cell spreading, reorganization of actin filaments and release of oxygen metabolites (measured as luminol-amplified chemiluminescence) were used as criteria for cell activation on positively charged, hydrophilic 1,2-diaminocyclohexane, and negatively charged, hydrophobic hexamethylene-disiloxane. The model surfaces were made by radio frequency plasma discharge polymerization. Neutrophil contact with the uncoated polymers induced a prolonged generation of oxygen radicals. Precoating of the polymer surfaces with human serum albumin (HSA) or fibrinogen, markedly reduced neutrophil activation, whereas coating with human immunoglobulin G (IgG), a well-known opsonin, resulted in significantly higher levels of cell activation. Consequently, protein coating overruled the activating effects of the polymer surfaces. The presence of unstimulated or thrombin-stimulated platelets markedly increased the reactivity of neutrophils against fibrinogen- and IgG-coated surfaces. However, neutrophils remained relatively unreactive in the presence of platelets on HSA-treated surfaces. Comparison of the different types of surfaces used, reveals a correlation between the degree of cell spreading, reorganization of the actin cytoskeleton and the amount of oxygen radicals produced. Our results suggest that the acute inflammatory reaction on a biomaterial surface is highly dependent on the nature and composition of the first adsorbed protein layer and the extent of platelet activation.
Collapse
Affiliation(s)
- Ghada Nimeri
- Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
30
|
Oldenborg PA, Sundqvist IM, Sehlin J. Different effects of glucose on extracellular and intracellular respiratory burst response in normal human neutrophils activated with the soluble agonist fMet-Leu-Phe. Diabet Med 2000; 17:532-7. [PMID: 10972584 DOI: 10.1046/j.1464-5491.2000.00329.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The study evaluated the effects of glucose concentration on the extracellular and intracellular activation of the respiratory burst in fMet-Leu-Phe-stimulated normal human neutrophils. METHODS Specific extracellular respiratory burst activity was measured as superoxide dismutase (SOD)-inhibitable cytochrome c reduction. Intracellular respiratory burst activity was studied using luminol-enhanced chemiluminescence in the presence of SOD and catalase, to quench extracellular chemiluminescence activity. Myeloperoxidase (MPO) release from activated neutrophils was studied by using the guaiacol technique. RESULTS The extracellular respiratory burst following activation with 1 microM fMet-Leu-Phe was significantly reduced at 15 and 25 mM D-glucose (9.5 +/- 1.0 and 8.5 +/- 0.8 nmol/10(6) cells and 10 min; P < 0.01 and P < 0.001, respectively) as compared with that at 5 mM glucose (10.3 +/- 1.0 nmol/10(6) cells and 10 min). When specifically studying the intracellular respiratory burst, no difference was found between the responses at 5, 15 or 25 mM glucose. Increasing glucose concentrations also reduced the secretion of MPO from fMet-Leu-Phe-activated neutrophils. CONCLUSIONS Elevated glucose concentrations inhibit the generation of extracellularly released reactive oxygen metabolites but have no effects on the intracellular respiratory burst in fMet-Leu-Phe-stimulated normal human neutrophils.
Collapse
Affiliation(s)
- P A Oldenborg
- Department of Integrative Medical Biology, Umeå University, Sweden.
| | | | | |
Collapse
|
31
|
Ogawa Y, Sakamoto H, Oryu M, Shinnou M, Sakamoto N, Yanghong W, Khatun R, Nishioka M. Production of macromolecular activators of phagocytosis by lysed platelets. Thromb Res 2000; 97:297-306. [PMID: 10709905 DOI: 10.1016/s0049-3848(99)00178-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macromolecular activators of phagocytosis from platelets (MAPP: 1-MAPP and s-MAPP) are released from activated fresh platelets and enhance leukocyte phagocytosis via the Fcgamma receptors. In this study, production of MAPP was investigated in lysate of freeze-thawed stored platelets (PL). Incubation of PL and thrombin with precursors of MAPP (pre-MAPP: pre-1-MAPP and pre-s-MAPP) produced 1-MAPP and s-MAPP, whereas products released from stored platelets by stimulation with thrombin or collagen did not produce MAPP after incubation with pre-MAPP. The action of thrombin in MAPP formation with PL and pre-MAPP was inhibited by antithrombin III and heparin, and sequential incubation studies indicated that the key site of action of thrombin was on a component of PL. Other serine proteases such as trypsin could be substituted for thrombin in this reaction, whereas the action of thrombin was specific when whole platelets were used instead of PL. Gel filtration of PL before and after treatment with thrombin suggested that a macromolecule in PL (PMA-I) is digested by thrombin and liberates a 700 to 800 Da substance (PMA-II) which converts pre-MAPP to MAPP.
Collapse
Affiliation(s)
- Y Ogawa
- Third Department of Medicine, Kagawa Medical University, Kita-gun, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zalavary S, Bengtsson T. Modulation of the chemotactic peptide- and immunoglobulin G-triggered respiratory burst in human neutrophils by exogenous and endogenous adenosine. Eur J Pharmacol 1998; 354:215-25. [PMID: 9754923 DOI: 10.1016/s0014-2999(98)00461-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of exogenous and endogenous adenosine on the production of oxygen metabolites in neutrophils triggered by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) or immunoglobulin G (IgG)-opsonized yeast particles, were investigated. By using luminol-enhanced chemiluminescence, we found that adenosine A1 receptor activation did not affect, whereas adenosine A receptor activation, through a mechanism involving the cyclic AMP (cAMP)-protein kinase A signalling pathway, both inhibited the fMLP- and IgG-triggered respiratory burst. The adenosine-induced inhibition was however more pronounced after exposure to fMLP than to IgG-yeast. Stimulation with fMLP caused an extracellular accumulation of endogenous adenosine, which indicates that this event is a negative-feedback mechanism preventing an uncontrolled activation of chemoattractant-stimulated neutrophils. On the contrary, exposure of neutrophils to IgG-yeast did not appear to accumulate extracellular adenosine, probably due to increased adenosine deaminase activity during phagocytosis. In conclusion, this work accentuates the importance of adenosine, both exogenously applied and endogenously formed, as an inflammatory agent modulating the respiratory burst during the different phases in neutrophil activation.
Collapse
Affiliation(s)
- S Zalavary
- Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden.
| | | |
Collapse
|
33
|
Zalavary S, Bengtsson T. Adenosine inhibits actin dynamics in human neutrophils: evidence for the involvement of cAMP. Eur J Cell Biol 1998; 75:128-39. [PMID: 9548370 DOI: 10.1016/s0171-9335(98)80055-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms by which adenosine regulates the inflammatory reaction are poorly characterized. In this study, we investigated the effects of adenosine on neutrophil actin polymerization elicited by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) or IgG-opsonized yeast particles. We used bodipy-phallacidin staining in combination with flow cytometry and found that adenosine markedly reduced actin polymerization triggered by IgG-yeast, whereas the effect on the fMLP-response was less pronounced. Similar or even more pronounced effects were obtained with the adenosine A2 receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), suggesting an A2 receptor-mediated mechanism. The following observations indicate that the A2 receptor-induced effects involve the cAMP-protein kinase A (PKA) signaling pathway: (1) a combination of NECA and the cAMP-specific phosphodiesterase (PDE) inhibitor Ro 20-1724 raised the cAMP content in both unstimulated and stimulated neutrophils and also further inhibited the actin dynamics; (2) the PKA inhibitor H89 reversed the inhibitory effects of NECA on the actin dynamics; (3) Ro 20-1724, isoproterenol and dibutyryl cAMP (DBcAMP) reduced actin polymerization in almost the same way as NECA did. NECA together with Ro 20-1724 impaired the fMLP-induced shape changes and cortical accumulation of actin filaments. In contrast, H89 potentiated the fMLP-induced formation of a submembranous ring of actin filaments. Neutrophils phagocytosing yeast particles in the presence of NECA and Ro 20-1724 were predominantly round in shape, and their ability to extend actin-rich pseudopods around the prey was reduced. These effects were partly antagonized by H89. In correlation with the effects on actin polymerization, NECA more effectively diminished IgG-induced upregulation of the beta2 integrin CD11b/CD18 than such upregulation induced by fMLP. The inhibitory effects of A2-receptor activation on actin dynamics and beta2 integrin expression in neutrophils exposed to IgG-yeast were also associated with a cAMP-dependent reduction of the phagocytic capacity. In conclusion, we show that adenosine inhibits actin dynamics and shape changes in neutrophils via a cAMP-dependent pathway. This finding further characterizes the mechanisms by which adenosine functions as an important modulator of the inflammatory response.
Collapse
Affiliation(s)
- S Zalavary
- Department of Health and Environment, Faculty of Health Sciences, Linköping University, Sweden
| | | |
Collapse
|
34
|
Holme PA, Müller F, Solum NO, Brosstad F, Frøland SS, Aukrust P. Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection. FASEB J 1998. [DOI: 10.1096/fsb2fasebj.12.1.79] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pål André Holme
- Research Institute for Internal MedicineMedical Department AThe National Hospital University of Oslo Norway
| | - Fredrik Müller
- Research Institute for Internal MedicineMedical Department AThe National Hospital University of Oslo Norway
- Section of Clinical Immunology and Infectious DiseasesMedical Department AThe National Hospital University of Oslo Norway
| | - Nils Olav Solum
- Research Institute for Internal MedicineMedical Department AThe National Hospital University of Oslo Norway
| | - Frank Brosstad
- Research Institute for Internal MedicineMedical Department AThe National Hospital University of Oslo Norway
| | - Stig S. Frøland
- Research Institute for Internal MedicineMedical Department AThe National Hospital University of Oslo Norway
- Section of Clinical Immunology and Infectious DiseasesMedical Department AThe National Hospital University of Oslo Norway
| | - Pål Aukrust
- Research Institute for Internal MedicineMedical Department AThe National Hospital University of Oslo Norway
- Section of Clinical Immunology and Infectious DiseasesMedical Department AThe National Hospital University of Oslo Norway
| |
Collapse
|
35
|
Holme PA, Müller F, Solum NO, Brosstad F, Frøland SS, Aukrust P. Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection. FASEB J 1998; 12:79-89. [PMID: 9438413 DOI: 10.1096/fasebj.12.1.79] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Besides their role in hemostasis, platelets are involved in inflammatory and immunological processes, and we hypothesize that platelet activation may play an immunopathogenetic role in HIV-1 infection. Blood was drawn from 15 controls and 20 HIV-1-infected patients with normal platelet counts, classified into groups of non-AIDS and AIDS. Platelet activation was detected using flow cytometry with mAbs against the release markers P-selectin and CD63, mAb against GPIb, and the probe annexin V detecting surface exposure of aminophospholipids. The amount of microvesicles was measured using mAb against GPIIIa. Compared to controls, blood samples from HIV-1-infected patients showed significantly enhanced levels of microvesicles and activated platelets as detected by their exposure of P-selectin, CD63, and aminophospholipids, as well as reduction in GPIb expression. Increased expression of P-selectin and amounts of microvesicles were most pronounced in advanced clinical and immunological disease. When studying the effect of HIV-1 protease inhibitor therapy (indinavir) on platelet activation, we found that concomitant with a profound decrease in plasma viral load, there was a near normalization of several of the parameters reflecting enhanced platelet activation. Finally, we demonstrated that platelets may be an important source of the chemokine RANTES in HIV-1-infected patients. Although both unstimulated and SFLLRN-stimulated platelets from asymptomatic patients had enhanced release of RANTES, platelets from AIDS patients were characterized by markedly enhanced spontaneous, but decreased SFLLRN-stimulated release of this chemokine. Taken together, these results, which demonstrate for the first time increased platelet activation in HIV-1-infected patients with normal platelet counts, may represent a previously unrecognized immunopathogenic factor in HIV-1 infection.
Collapse
Affiliation(s)
- P A Holme
- Research Institute for Internal Medicine, Medical Department A, The National Hospital, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|