1
|
Hason M, Mikulasova T, Machonova O, Pombinho A, van Ham TJ, Irion U, Nüsslein-Volhard C, Bartunek P, Svoboda O. M-CSFR/CSF1R signaling regulates myeloid fates in zebrafish via distinct action of its receptors and ligands. Blood Adv 2022; 6:1474-1488. [PMID: 34979548 PMCID: PMC8905693 DOI: 10.1182/bloodadvances.2021005459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR/CSF1R) signaling is crucial for the differentiation, proliferation, and survival of myeloid cells. The CSF1R pathway is a promising therapeutic target in many human diseases, including neurological disorders and cancer. Zebrafish are commonly used for human disease modeling and preclinical therapeutic screening. Therefore, it is necessary to understand the proper function of cytokine signaling in zebrafish to reliably model human-related diseases. Here, we investigate the roles of zebrafish Csf1rs and their ligands (Csf1a, Csf1b, and Il34) in embryonic and adult myelopoiesis. The proliferative effect of exogenous Csf1a on embryonic macrophages is connected to both receptors, Csf1ra and Csf1rb, however there is no evident effect of Csf1b in zebrafish embryonic myelopoiesis. Furthermore, we uncover an unknown role of Csf1rb in zebrafish granulopoiesis. Deregulation of Csf1rb signaling leads to failure in myeloid differentiation, resulting in neutropenia throughout the whole lifespan. Surprisingly, Il34 signaling through Csf1rb seems to be of high importance as both csf1rbΔ4bp-deficient and il34Δ5bp-deficient zebrafish larvae lack granulocytes. Our single-cell RNA sequencing analysis of adult whole kidney marrow (WKM) hematopoietic cells suggests that csf1rb is expressed mainly by blood and myeloid progenitors, and the expression of csf1ra and csf1rb is nonoverlapping. We point out differentially expressed genes important in hematopoietic cell differentiation and immune response in selected WKM populations. Our findings could improve the understanding of myeloid cell function and lead to the further study of CSF1R pathway deregulation in disease, mostly in cancerogenesis.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tereza Mikulasova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Olga Machonova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Antonio Pombinho
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; and
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ondrej Svoboda
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
2
|
Jiang C, Wang ZN, Kang YC, Chen Y, Lu WX, Ren HJ, Hou BR. Ki20227 aggravates apoptosis, inflammatory response, and oxidative stress after focal cerebral ischemia injury. Neural Regen Res 2022; 17:137-143. [PMID: 34100449 PMCID: PMC8451550 DOI: 10.4103/1673-5374.314318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The survival of microglia depends on the colony-stimulating factor-1 receptor (CSF1R) signaling pathway under physiological conditions. Ki20227 is a highly selective CSF1R inhibitor that has been shown to change the morphology of microglia. However, the effects of Ki20227 on the progression of ischemic stroke are unclear. In this study, male C57BL/6 mouse models of focal cerebral ischemic injury were established through the occlusion of the middle cerebral artery and then administered 3 mg/g Ki20227 for 3 successive days. The results revealed that the number of ionized calcium-binding adaptor molecule 1/bromodeoxyuridine double positive cells in the infarct tissue was reduced, the degree of edema was increased, neurological deficits were aggravated, infarct volume was increased, and the number of peri-infarct Nissl bodies was reduced. The number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells in the peri-infarct tissue was increased. The expression levels of Bax and Cleaved caspase-3 were up-regulated. Bcl-2 expression was downregulated. The expression levels of inflammatory factors and oxidative stress-associated factors were increased. These findings suggested that Ki20227 blocked microglial proliferation and aggravated the pathological progression of ischemia/reperfusion injury in a transient middle cerebral artery occlusion model. This study was approved by the Animal Ethics Committee of Lanzhou University Second Hospital (approval No. D2020-68) on March 6, 2020.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neurosurgery, Lanzhou University Second Hospital; Institute of Neurology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ze-Ning Wang
- Department of Neurosurgery, Lanzhou University Second Hospital; Institute of Neurology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Chen Kang
- Department of Neurosurgery, Lanzhou University Second Hospital; Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yi Chen
- Department of Neurosurgery, Lanzhou University Second Hospital; Institute of Neurology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Wei-Xin Lu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Hai-Jun Ren
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bo-Ru Hou
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
3
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Combes TW, Orsenigo F, Stewart A, Mendis ASJR, Dunn-Walters D, Gordon S, Martinez FO. CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19. IMMUNOTHERAPY ADVANCES 2021; 1:ltab003. [PMID: 35915730 PMCID: PMC7928847 DOI: 10.1093/immadv/ltab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Summary
Mononuclear phagocytes defend tissues, present antigens, and mediate recovery and healing. To date, we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess mononuclear phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state, CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked ex vivo to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.
Collapse
Affiliation(s)
- Theo W Combes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Federica Orsenigo
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alexander Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Gow DJ, Jackson H, Forsythe P, Nuttall T, Gow AG, Mellanby RJ, Hume DA. Measurement of serum Interleukin 34 (IL‐34) and correlation with severity and pruritus scores in client‐owned dogs with atopic dermatitis. Vet Dermatol 2020; 31:359-e94. [PMID: 32794277 DOI: 10.1111/vde.12873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Deborah J. Gow
- R(D)SVS and The Roslin Institute Hospital for Small Animals The University of Edinburgh Edinburgh EH25 9RG Scotland, UK
| | - Hilary Jackson
- The Dermatology Referral Service 528 Paisley Road West Glasgow G51 1RN UK
| | - Peter Forsythe
- The Dermatology Referral Service 528 Paisley Road West Glasgow G51 1RN UK
| | - Tim Nuttall
- R(D)SVS and The Roslin Institute Hospital for Small Animals The University of Edinburgh Edinburgh EH25 9RG Scotland, UK
| | - Adam G. Gow
- R(D)SVS and The Roslin Institute Hospital for Small Animals The University of Edinburgh Edinburgh EH25 9RG Scotland, UK
| | - Richard J. Mellanby
- R(D)SVS and The Roslin Institute Hospital for Small Animals The University of Edinburgh Edinburgh EH25 9RG Scotland, UK
| | - David A. Hume
- R(D)SVS and The Roslin Institute Hospital for Small Animals The University of Edinburgh Edinburgh EH25 9RG Scotland, UK
| |
Collapse
|
6
|
Freem L, Summers KM, Gheyas AA, Psifidi A, Boulton K, MacCallum A, Harne R, O’Dell J, Bush SJ, Hume DA. Analysis of the Progeny of Sibling Matings Reveals Regulatory Variation Impacting the Transcriptome of Immune Cells in Commercial Chickens. Front Genet 2019; 10:1032. [PMID: 31803225 PMCID: PMC6870463 DOI: 10.3389/fgene.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
There is increasing recognition that the underlying genetic variation contributing to complex traits influences transcriptional regulation and can be detected at a population level as expression quantitative trait loci. At the level of an individual, allelic variation in transcriptional regulation of individual genes can be detected by measuring allele-specific expression in RNAseq data. We reasoned that extreme variants in gene expression could be identified by analysis of inbred progeny with shared grandparents. Commercial chickens have been intensively selected for production traits. Selection is associated with large blocks of linkage disequilibrium with considerable potential for co-selection of closely linked "hitch-hiker alleles" affecting traits unrelated to the feature being selected, such as immune function, with potential impact on the productivity and welfare of the animals. To test this hypothesis that there is extreme allelic variation in immune-associated genes we sequenced a founder population of commercial broiler and layer birds. These birds clearly segregated genetically based upon breed type. Each genome contained numerous candidate null mutations, protein-coding variants predicted to be deleterious and extensive non-coding polymorphism. We mated selected broiler-layer pairs then generated cohorts of F2 birds by sibling mating of the F1 generation. Despite the predicted prevalence of deleterious coding variation in the genomic sequence of the founders, clear detrimental impacts of inbreeding on survival and post-hatch development were detected in only one F2 sibship of 15. There was no effect on circulating leukocyte populations in hatchlings. In selected F2 sibships we performed RNAseq analysis of the spleen and isolated bone marrow-derived macrophages (with and without lipopolysaccharide stimulation). The results confirm the predicted emergence of very large differences in expression of individual genes and sets of genes. Network analysis of the results identified clusters of co-expressed genes that vary between individuals and suggested the existence of trans-acting variation in the expression in macrophages of the interferon response factor family that distinguishes the parental broiler and layer birds and influences the global response to lipopolysaccharide. This study shows that the impact of inbreeding on immune cell gene expression can be substantial at the transcriptional level, and potentially opens a route to accelerate selection using specific alleles known to be associated with desirable expression levels.
Collapse
Affiliation(s)
- Lucy Freem
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Almas A. Gheyas
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Kay Boulton
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amanda MacCallum
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rakhi Harne
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenny O’Dell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|