1
|
Lennartz S, Byrne HA, Kümmel S, Krauss M, Nowak KM. Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing. Nat Commun 2024; 15:9178. [PMID: 39448570 PMCID: PMC11502848 DOI: 10.1038/s41467-024-53478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Biodegradability testing in soil helps to identify safe synthetic organic chemicals but is still obscured by the formation of soil-bound 'non-extractable' residues (NERs). Present-day methodologies using radiocarbon or stable (13C, 15N) isotope labeling cannot easily differentiate soil-bound parent chemicals or transformation products (xenoNERs) from harmless soil-bound biomolecules of microbial degraders (bioNERs). Hypothesizing a minimal retention of hydrogen in biomolecules, we here apply stable hydrogen isotope - deuterium (D) - labeling to unravel the origin of NERs. Soil biodegradation tests with D- and 13C-labeled 2,4-D, glyphosate and sulfamethoxazole reveal consistently lower proportions of applied D than 13C in total NERs and in amino acids, a quantitative biomarker for bioNERs. Soil-bound D thus mostly represents xenoNERs and not bioNERs, enabling an efficient quantification of xenoNERs by just measuring the total bound D. D or tritium (T) labeling could thus improve the value of biodegradability testing results for diverse organic chemicals forming soil-bound residues.
Collapse
Affiliation(s)
- Sophie Lennartz
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Harriet A Byrne
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Karolina M Nowak
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
- Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Edelmann MR, Sladojevich F, Husbands SM, Otteneder MB, Blagbrough IS. A Brief Review of Radiolabelling Nucleic Acid-Based Molecules for Tracking and Monitoring. J Labelled Comp Radiopharm 2024; 67:410-424. [PMID: 39543953 DOI: 10.1002/jlcr.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The rise of nucleic acid-based therapeutics continues apace. At the same time, the need for radiolabelled oligonucleotides for determination of spatial distribution is increasing. Complex molecular structures with mostly multiple charges and low solubility in organic solvents increase the challenge of integrating radionuclides. In preclinical research, it is important to understand the fate of new drug candidates in biodistribution studies, target binding or biotransformation studies. Depending on a specific question, the selection of a respective radiolabelling strategy is crucial. Radiometals for molecular imaging with positron emission tomography or single-photon computed tomography generally require an attached chelating agent for stable complexation of the metal with the oligonucleotide, whereas labelling using carbon-11/-14 or tritium allows incorporation of the radioisotope into the native structure without altering it. Moreover, the suitability of direct radiolabelling of the oligonucleotide of interest or indirect radiolabelling, for example, by a two-step pretargeting approach, for the study design requires consideration. This review focuses on the challenges of radiolabelling nucleic acid-based molecules with beta-plus, gamma and beta-minus emitters and their use for tracking and monitoring.
Collapse
Affiliation(s)
- Martin R Edelmann
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Therapeutic Modalities, Small Molecule Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Therapeutic Modalities, Small Molecule Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Michael B Otteneder
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Pharmaceutical Sciences, In Vivo Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
3
|
Teng Y, Yang H, Tian Y. The Development and Application of Tritium-Labeled Compounds in Biomedical Research. Molecules 2024; 29:4109. [PMID: 39274956 PMCID: PMC11397416 DOI: 10.3390/molecules29174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
With low background radiation, tritiate compounds exclusively emit intense beta particles without structural changes. This makes them a useful tool in the drug discovery arsenal. Thanks to the recent rapid progress in tritium chemistry, the preparation and analysis of tritium-labeled compounds are now much easier, simpler, and cheaper. Pharmacokinetics, autoradiography, and protein binding studies have been much more efficient with the employment of tritium-labeled compounds. This review provides a comprehensive overview of tritium-labeled compounds regarding their properties, synthesis strategies, and applications.
Collapse
Affiliation(s)
- Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
4
|
Martinelli E, Spiller M, Weck R, Llompart P, Minoletti C, Güssregen S, Sib A, Derdau V. Pegylated Phosphine Ligands in Iridium(I) Catalyzed Hydrogen Isotope Exchange Reactions in Aqueous Buffers. Chemistry 2024; 30:e202402038. [PMID: 38861127 DOI: 10.1002/chem.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The synthesis of a water-soluble, phosphine-pegylated iridium(I) catalyst and its application in hydrogen isotope exchange (HIE) reactions in buffer is reported. The longer polyethylene glycol side chains on the phosphine increased the water solubility independently from the pH. HIE reactions of polar substrates in protic solvents were studied. DFT calculations gave further insights into the catalytic processes. The scope and limitation of the pegylated catalyst was studied in HIE reactions of several complex compounds in borax buffer at pH 9 and the best conditions were applied in a tritium experiment with the drug telmisartan.
Collapse
Affiliation(s)
- Elisa Martinelli
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Marie Spiller
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Pierre Llompart
- Sanofi France, Integrated Drug Discovery, 1 impasse des Ateliers, 94 400, Vitry-sur-Seine, France
| | - Claire Minoletti
- Sanofi France, Integrated Drug Discovery, 1 impasse des Ateliers, 94 400, Vitry-sur-Seine, France
| | - Stefan Güssregen
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Volker Derdau
- Sanofi Germany, Integrated Drug Discovery, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Doyle MGJ, Mair BA, Sib A, Bsharat O, Munch M, Derdau V, Rotstein BH, Lundgren RJ. A practical guide for the preparation of C1-labeled α-amino acids using aldehyde catalysis with isotopically labeled CO 2. Nat Protoc 2024; 19:2147-2179. [PMID: 38548937 DOI: 10.1038/s41596-024-00974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 07/10/2024]
Abstract
Isotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO2 (* = 14, 13, 11). This late-stage labeling strategy is enabled by the one-pot carboxylate exchange of unprotected α-amino acids with [*C]CO2. The protocol consists of three separate procedures, describing the syntheses of (±)-[1-13C]phenylalanine, (±)-[1-11C]phenylalanine and (±)-[1-14C]phenylalanine from unlabeled phenylalanine. Although the delivery of [*C]CO2 is operationally distinct for each experiment, each procedure relies on the same fundamental chemistry and can be executed by heating the reaction components at 50-90 °C under basic conditions in dimethylsulfoxide. Performed on scales of up to 0.5 mmol, this methodology is amenable to C1-labeling of many proteinogenic α-amino acids and nonnatural derivatives, which is a breakthrough from existing methods. The synthesis of (±)-[1-13C]phenylalanine requires ~2 d, with product typically obtained in a 60-80% isolated yield (n = 3, μ = 71, σ = 8.3) with an isotopic incorporation of 70-88% (n = 18, μ = 72, σ = 9.0). Starting from the preformed imino acid (~3 h preparation time), rapid synthesis of (±)-[1-11C]phenylalanine can be completed in ~1 h with an isolated radiochemical yield of 13%. Finally, (±)-[1-14C]phenylalanine can be accessed in ~2 d with a 51% isolated yield and 11% radiochemical yield.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Ma Z, Tang M, Chen L. Study on tissue distribution, metabolite profiling, and excretion of [ 14C]-labeled flonoltinib maleate in rats. J Pharm Biomed Anal 2024; 241:115984. [PMID: 38266453 DOI: 10.1016/j.jpba.2024.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Flonoltinib Maleate (FM) is a dual-target inhibitor that selectively suppresses Janus kinase 2/FMS-like tyrosine kinase 3 (JAK2/FLT3), which is currently in phase I/IIa clinical trial in China for the treatment of myeloproliferative neoplasms (MPNs). In this research, we used [14C]-labeled FM (14C-FM) to investigate the distribution, metabolism, and excretion of FM in rats using High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry/Radioactivity Monitoring (HPLC-HRMS/RAM) and liquid scintillation counter. The results revealed that FM displayed widespread distribution in rats. Furthermore, FM demonstrated rapid clearance without any observed risk of organ toxicity attributed to accumulation. Profiling of FM metabolites in rat plasma, feces, urine, and bile identified a total of 17 distinct metabolites, comprising 7 phase I metabolites and 10 phase II metabolites. The major metabolic reactions involved oxygenation, dealkylation, methylation, sulfation, glucuronidation and glutathione conjugation. Based on these findings, a putative metabolic pathway of FM in rats was proposed. The overall recovery rate in the excretion experiment ranged from 93.04 % to 94.74 %. The results indicated that FM undergoes extensive hepatic metabolism in SD rats, with the majority being excreted through bile as metabolites and ultimately eliminated via feces. A minor fraction of FM (<10 %) was excreted through renal excretion in the form of urine. Integration of the current results with previous pharmacokinetic investigations of FM in rats and dogs enables a comprehensive elucidation of the in vivo ADME processes and characteristics of FM, thereby establishing a solid foundation for subsequent clinical investigations of FM.
Collapse
Affiliation(s)
- Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China.
| |
Collapse
|
7
|
Cuyckens F, Hvenegaard MG, Cassidy KC, Spracklin DK, James AD, Pedersen ML, Scarfe G, Wagner DS, Georgi K, Schulz SI, Schieferstein H, Bjornsdottir I, Romeo AA, Da Violante G, Blech S, Moliner P, Young GC. Recommendations on the Use of Multiple Labels in Human Mass Balance Studies. Drug Metab Dispos 2024; 52:153-158. [PMID: 38216306 DOI: 10.1124/dmd.123.001429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
The administration of radiolabeled drug candidates is considered the gold standard in absorption, distribution, metabolism, and excretion studies for small-molecule drugs since it allows facile and accurate quantification of parent drug, metabolites, and total drug-related material independent of the compound structure. The choice of the position of the radiolabel, typically 14C or 3H, is critical to obtain relevant information. Sometimes, a biotransformation reaction may lead to cleavage of a part of the molecule. As a result, only the radiolabeled portion can be followed, and information on the fate of the nonlabeled metabolite may be lost. Synthesis and administration of two or more radiolabeled versions of the parent drug as a mixture or in separate studies may resolve this issue but comes with additional challenges. In this paper, we address the questions that may be considered to help make the right choice whether to use a single or multiple radiolabel approach and discuss the pros and cons of different multiple-labeling strategies that can be taken as well as alternative methods that allow the nonlabeled part of the molecule to be followed. SIGNIFICANCE STATEMENT: Radiolabeled studies are the gold standard in drug metabolism research, but molecules can undergo cleavage with loss of the label. This often results in discussions around potential use of multiple labels, which seem to be occurring with increased frequency since an increasing proportion of the small-molecule drugs are tending towards larger molecular weights. This review provides insight and decision criteria in considering a multiple-label approach as well as pros and cons of different strategies that can be followed.
Collapse
Affiliation(s)
- Filip Cuyckens
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Mette G Hvenegaard
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Kenneth C Cassidy
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Douglas K Spracklin
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Alexander D James
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Mette L Pedersen
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Graeme Scarfe
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - David S Wagner
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Katrin Georgi
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Simone I Schulz
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Hanno Schieferstein
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Inga Bjornsdottir
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Andrea A Romeo
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Georges Da Violante
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Stefan Blech
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Patricia Moliner
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| | - Graeme C Young
- Janssen R&D, Beerse, Belgium (F.C.); H. Lundbeck A/S, Copenhagen, Denmark (M.G.H.); Eli Lilly and Company, Indianapolis, Indiana (K.C.C.); Pfizer Inc., Groton, Connecticut (D.K.S.); Novartis, Basel, Switzerland (A.D.J.); Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.L.P.); Sosei Heptares, Cambridge, United Kingdom (G.S.); AbbVie, North Chicago, Illinois (D.S.W.); Bayer AG, Wuppertal, Germany (K.G., S.I.S.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.S.); Novo Nordisk, Maaloev, Denmark (I.B.); Roche Pharma Research and Early Development, Basel, Switzerland (A.A.R.); Servier, Gif-sur-Yvette, France (G.Da.V.); Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (S.B.); Sanofi, Montpellier, France (P.M.); and GSK Research & Development Ltd., Stevenage (G.C.Y.)
| |
Collapse
|
8
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
9
|
Cohen A, Legouffe R, Mao J, Gaudin M, Bonnel D. MALDI Mass Spectrometry Imaging and Semi-Quantification of Topically Delivered Lactic Acid. Skin Res Technol 2023; 29:e13485. [PMID: 37881041 PMCID: PMC10579629 DOI: 10.1111/srt.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Lactic acid is a common active ingredient in many topical skincare products; however, measuring its delivery into the skin is challenging due to the presence of a large level of endogenous lactic acid. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to quantitatively and qualitatively measure the delivery of lactic acid into the skin from a range of topical skincare products. MATERIALS AND METHODS Porcine skin samples were treated with various skincare products containing lactic acid. After 24 h, skin samples were sectioned and treated via H&E staining or prepared for MALDI-MSI using chemical derivatization. Samples were then analyzed by MALDI-MSI imaging to obtain lactic acid distribution in the entire skin section. RESULTS Due to the high level of endogenous lactic acid in the skin, a "triple isotope" of lactic acid (L-Lactic acid-13 C3 ), was needed to provide full resolution from the skin's background signal with MALDI-MSI. With this approach, the topically delivered lactic acid could be quantitatively and qualitatively analyzed from a variety of skincare products. CONCLUSIONS The combination of L-Lactic acid-13 C3 and MALDI-MSI was successfully used to quantitatively and qualitatively measure the topical delivery of lactic acid from a variety of skincare products. This approach could be used in future work to better understand the mode of action of lactic acid as an active ingredient in skincare products.
Collapse
Affiliation(s)
- Aaron Cohen
- Personal Care Department of the Colgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | | | - Junhong Mao
- Personal Care Department of the Colgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | | | | |
Collapse
|
10
|
Kramp H, Weck R, Sandvoss M, Sib A, Mencia G, Fazzini PF, Chaudret B, Derdau V. In situ Generated Iridium Nanoparticles as Hydride Donors in Photoredox-Catalyzed Hydrogen Isotope Exchange Reactions with Deuterium and Tritium Gas. Angew Chem Int Ed Engl 2023; 62:e202308983. [PMID: 37453077 DOI: 10.1002/anie.202308983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.
Collapse
Affiliation(s)
- Henrik Kramp
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Martin Sandvoss
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Bauder-Wüst U, Schäfer M, Winter R, Remde Y, Roscher M, Breyl H, Poethko T, Tömböly C, Benešová-Schäfer M. Synthesis of tritium-labeled Lu-PSMA-617: Alternative tool for biological evaluation of radiometal-based pharmaceuticals. Appl Radiat Isot 2023; 197:110819. [PMID: 37119703 DOI: 10.1016/j.apradiso.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
This project focuses on the generation and evaluation of functional alternatives to radiometal-based pharmaceuticals supporting basic research and the in vitro developmental phase. Employing robust tritium chemistry and non-radioactive metal surrogates in two synthetic and labeling strategies resulted in ([ring-3H]Nal)PSMA-617 and ([α,ß-3H]Nal)PSMA-617. In particular, ([α,ß-3H]Nal)Lu-PSMA-617 exhibited high radiolytic as well as metal-complex stability and was compared to the clinically-established radiopharmaceutical [177Lu]Lu-PSMA-617. The cell-based assays confirmed the applicability of ([α,ß-3H]Nal)Lu-PSMA-617 as a substitute of [177Lu]Lu-PSMA-617 in pre-clinical biological settings.
Collapse
Affiliation(s)
- Ulrike Bauder-Wüst
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Martin Schäfer
- Service Unit for Radiopharmaceuticals and Preclinical Trials, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Ruth Winter
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Yvonne Remde
- Service Unit for Radiopharmaceuticals and Preclinical Trials, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Trials, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Heinz Breyl
- Executive Department for Radiation Protection and Dosimetry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Thorsten Poethko
- Bayer AG, Research & Development, Pharmaceuticals, DMPK, Apratherweg 18a, 42096, Wuppertal, Germany.
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Temesvári körút 62, 6726, Szeged, Hungary.
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Dual-Labelled Nanoparticles Inform on the Stability of Fluorescent Labels In Vivo. Pharmaceutics 2023; 15:pharmaceutics15030769. [PMID: 36986630 PMCID: PMC10059031 DOI: 10.3390/pharmaceutics15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Fluorescent labelling is commonly used to monitor the biodistribution of nanomedicines. However, meaningful interpretation of the results requires that the fluorescent label remains attached to the nanomedicine. In this work, we explore the stability of three fluorophores (BODIPY650, Cyanine 5 and AZ647) attached to polymeric hydrophobic biodegradable anchors. Using dual-labelled poly(ethylene glycol)-b-poly(lactic acid) (PEG-PLA) nanoparticles that are both radioactive and fluorescent, we investigated how the properties of the fluorophores impact the stability of the labelling in vitro and in vivo. Results suggest that the more hydrophilic dye (AZ647) is released faster from nanoparticles, and that this instability results in misinterpretation of in vivo data. While hydrophobic dyes are likely more suitable to track nanoparticles in biological environments, quenching of the fluorescence inside the nanoparticles can also introduce artefacts. Altogether, this work raises awareness about the importance of stable labelling methods when investigating the biological fate of nanomedicines.
Collapse
|
13
|
Bsharat O, Doyle MGJ, Munch M, Mair BA, Cooze CJC, Derdau V, Bauer A, Kong D, Rotstein BH, Lundgren RJ. Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO 2. Nat Chem 2022; 14:1367-1374. [PMID: 36344821 DOI: 10.1038/s41557-022-01074-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
The isotopic labelling of small molecules is integral to drug development and for understanding biochemical processes. The preparation of carbon-labelled α-amino acids remains difficult and time consuming, with established methods involving label incorporation at an early stage of synthesis. This explains the high cost and scarcity of C-labelled products and presents a major challenge in 11C applications (11C t1/2 = 20 min). Here we report that aldehydes catalyse the isotopic carboxylate exchange of native α-amino acids with *CO2 (* = 14, 13, 11). Proteinogenic α-amino acids and many non-natural variants containing diverse functional groups undergo labelling. The reaction probably proceeds via the trapping of *CO2 by imine-carboxylate intermediates to generate iminomalonates that are prone to monodecarboxylation. Tempering catalyst electrophilicity was key to preventing irreversible aldehyde consumption. The pre-generation of the imine carboxylate intermediate allows for the rapid and late-stage 11C-radiolabelling of α-amino acids in the presence of [11C]CO2.
Collapse
Affiliation(s)
- Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Volker Derdau
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Duanyang Kong
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Vaidyanathan S, Reed A. Pipeline Impact of Radiolabeled Compounds in Drug Discovery and Development. ACS Med Chem Lett 2022; 13:1564-1567. [PMID: 36262403 PMCID: PMC9575178 DOI: 10.1021/acsmedchemlett.2c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The long-lived radionuclides tritium and carbon-14 have been used for many years in pharmaceutical research and development for making key efficacy and toxicological decisions. Early discovery utilizes radiolabels for compound selection through radioligand binding assays and autoradiography. In preclinical safety evaluation, the use of labeled compounds for adsorption, distribution, metabolism, and excretion studies is often preferred for the added detection sensitivity. As the drug substance proceeds to the clinic, human metabolism studies are reliant on the use of labeled materials to fulfill required regulatory applications.
Collapse
Affiliation(s)
- Srirajan Vaidyanathan
- Department of Process Chemistry, Radiochemistry, AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Aimee Reed
- Department of Process Chemistry, Radiochemistry, AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| |
Collapse
|
15
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
16
|
Connan-Perrot S, Léger T, Lelandais P, Desdoits-Lethimonier C, David A, Fowler PA, Mazaud-Guittot S. Six Decades of Research on Human Fetal Gonadal Steroids. Int J Mol Sci 2021; 22:ijms22136681. [PMID: 34206462 PMCID: PMC8268622 DOI: 10.3390/ijms22136681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Human fetal gonads acquire endocrine steroidogenic capabilities early during their differentiation. Genetic studies show that this endocrine function plays a central role in the sexually dimorphic development of the external genitalia during fetal development. When this endocrine function is dysregulated, congenital malformations and pathologies are the result. In this review, we explain how the current knowledge of steroidogenesis in human fetal gonads has benefited from both the technological advances in steroid measurements and the assembly of detailed knowledge of steroidogenesis machinery and its expression in human fetal gonads. We summarise how the conversion of radiolabelled steroid precursors, antibody-based assays, mass spectrometry, ultrastructural studies, and the in situ labelling of proteins and mRNA have all provided complementary information. In this review, our discussion goes beyond the debate on recommendations concerning the best choice between the different available technologies, and their degrees of reproducibility and sensitivity. The available technologies and techniques can be used for different purposes and, as long as all quality controls are rigorously employed, the question is how to maximise the generation of robust, reproducible data on steroid hormones and their crucial roles in human fetal development and subsequent functions.
Collapse
Affiliation(s)
- Stéphane Connan-Perrot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France; (S.C.-P.); (P.L.); (C.D.-L.); (A.D.)
| | - Thibaut Léger
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), CEDEX, 35306 Fougères, France;
| | - Pauline Lelandais
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France; (S.C.-P.); (P.L.); (C.D.-L.); (A.D.)
| | - Christèle Desdoits-Lethimonier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France; (S.C.-P.); (P.L.); (C.D.-L.); (A.D.)
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France; (S.C.-P.); (P.L.); (C.D.-L.); (A.D.)
| | - Paul A. Fowler
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK;
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France; (S.C.-P.); (P.L.); (C.D.-L.); (A.D.)
- Correspondence: ; Tel.: +33-2-23-23-58-86
| |
Collapse
|
17
|
Histamine H 2 receptor radioligands: triumphs and challenges. Future Med Chem 2021; 13:1073-1081. [PMID: 33906421 DOI: 10.4155/fmc-2021-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of the histamine H2 receptor (H2R), radioligands were among the most powerful tools to investigate its role and function. Initially, radiolabeling was used to investigate human and rodent tissues regarding their receptor expression. Later, radioligands gained increasing significance as pharmacological tools in in vitro assays. Although tritium-labeling was mainly used for this purpose, labeling with carbon-14 is preferred for metabolic studies of drug candidates. After the more-or-less successful application of numerous labeled H2R antagonists, the recent development of the G protein-biased radioligand [3H]UR-KAT479 represents another step forward to elucidate the widely unknown role of the H2R in the central nervous system through future studies.
Collapse
|
18
|
Aboumanei MH, Mahmoud AF, Motaleb MA. Formulation of chitosan coated nanoliposomes for the oral delivery of colistin sulfate: in vitro characterization, 99mTc-radiolabeling and in vivo biodistribution studies. Drug Dev Ind Pharm 2021; 47:626-635. [PMID: 33834934 DOI: 10.1080/03639045.2021.1908334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colistin sulfate is a very important antibiotic for the treatment of multidrug-resistant Gram-negative infections. Unfortunately, it has low oral bioavailability and several side effects following parenteral administration. The present study aims to develop chitosan-coated colistin nanoliposomes to improve the stability in the gastrointestinal tract and to enhance the oral delivery of colistin. The chitosan-coated colistin nanoliposomes were obtained via thin-film evaporation and electrostatic deposition methods using either Span 60, Tween 65 or Tween 80 as surfactants with different cholesterol: surfactant: soya lecithin ratios. The influence of systems variables was further characterized by vesicle size analysis, zeta potential (ZP), poly dispersibility index (PDI), and also their entrapment efficiency percentage (EE %) was evaluated. Various systems were formed with vesicle sizes in the nano-range, 155.64 ± 12.53 nm to 315.64 ± 15.90 nm, and EE % of 45.2 ± 2.9% to 81.8 ± 2.9%. Moreover, the ZP value of the prepared nanoliposomes switched from a negative to a positive value after chitosan coating. To track the released colistin in vivo, technetium 99m (99mTc) was incorporated into the optimum system (S-3) system via direct coupling with colistin. Chitosan-coated 99mTc-colistin nanoliposome, 99mTc-colistin suspension, and 99mTc-chitosan-coated nanoliposomes (placebo) were administered orally into bacterial infection (Escherichia coli) bearing mice. The biodistribution results showed that chitosan-coated nanoliposome significantly enhanced the bioavailability of colistin compared to colistin suspension (the commercially available). Moreover, the system effectively improved the localization of colistin at the infected muscle. In conclusion, this approach offers a promising tool for enhanced oral delivery of colistin.
Collapse
Affiliation(s)
- Mohamed H Aboumanei
- Labeled Compounds Department, Hot Lab Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ashgan F Mahmoud
- Labeled Compounds Department, Hot Lab Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Motaleb
- Labeled Compounds Department, Hot Lab Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
19
|
Reilly SW, Lam YH, Ren S, Strotman NA. Late-Stage Carbon Isotope Exchange of Aryl Nitriles through Ni-Catalyzed C-CN Bond Activation. J Am Chem Soc 2021; 143:4817-4823. [PMID: 33725443 DOI: 10.1021/jacs.1c01454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile one-pot strategy for 13CN and 14CN exchange with aryl, heteroaryl, and alkenyl nitriles using a Ni phosphine catalyst and BPh3 is described. This late-stage carbon isotope exchange (CIE) strategy employs labeled Zn(CN)2 to facilitate enrichment using the nonlabeled parent compound as the starting material, eliminating de novo synthesis for precursor development. A broad substrate scope encompassing multiple pharmaceuticals is disclosed, including the preparation of [14C] belzutifan to illustrate the exceptional functional group tolerance and utility of this labeling approach. Preliminary experimental and computational studies suggest the Lewis acid BPh3 is not critical for the oxidative addition step and instead plays a role in facilitating CN exchange on Ni. This CIE method dramatically reduces the synthetic steps and radioactive waste involved in preparation of 14C labeled tracers for clinical development.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc. Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A Strotman
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
20
|
Kong D, Munch M, Qiqige Q, Cooze CJC, Rotstein BH, Lundgren RJ. Fast Carbon Isotope Exchange of Carboxylic Acids Enabled by Organic Photoredox Catalysis. J Am Chem Soc 2021; 143:2200-2206. [PMID: 33507731 DOI: 10.1021/jacs.0c12819] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbazole/cyanobenzene photocatalysts promote the direct isotopic carboxylate exchange of C(sp3) acids with labeled CO2. Substrates that are not compatible with transition-metal-catalyzed degradation-reconstruction approaches or prone to thermally induced reversible decarboxylation undergo isotopic incorporation at room temperature in short reaction times. The radiolabeling of drug molecules and precursors with [11C]CO2 is demonstrated.
Collapse
Affiliation(s)
- Duanyang Kong
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Qiqige Qiqige
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
21
|
Kingston L, Gu C, Guo J, Swallow S, Elmore CS. The impact of radiochemistry in drug projects: The use of C-14 label in the AZD8529, AZD7325, and AZD6280 projects. J Labelled Comp Radiopharm 2020; 64:65-72. [PMID: 33326121 DOI: 10.1002/jlcr.3902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
Understanding the metabolic transformations of a potential drug molecule is important to understanding the safety profile of a drug candidate. Liquid chromatography-mass spectrometry is a standard method for detecting metabolites in the drug discovery stage, but this can lead to an incomplete understanding of the molecule's metabolism. In this manuscript, we highlight the role radiolabeling played in determining the metabolism and in quantifying the metabolites of AZD8529, AZD7325, and AZD6280. A quantitative whole-body autoradiography study can detect covalent adducts in vivo as was the case with AZD5248 in which the compound was bound to the aorta. Ultimately another compound free of aortic binding was developed, AZD7986.
Collapse
Affiliation(s)
- Lee Kingston
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Chungang Gu
- Neurosciences, BioPharmaceutical R&D, AstraZeneca, Waltham, MA, USA
| | - Jian Guo
- Neurosciences, BioPharmaceutical R&D, AstraZeneca, Waltham, MA, USA
| | - Steve Swallow
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield, UK
| | - Charles S Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
22
|
Southwell JW, Black CM, Duhme-Klair AK. Experimental Methods for Evaluating the Bacterial Uptake of Trojan Horse Antibacterials. ChemMedChem 2020; 16:1063-1076. [PMID: 33238066 DOI: 10.1002/cmdc.202000806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Abstract
The field of antibacterial siderophore conjugates, referred to as Trojan Horse antibacterials, has received increasing attention in recent years, driven by the rise of antimicrobial resistance. Trojan Horse antibacterials offer an opportunity to exploit the specific pathways present in bacteria for active iron uptake, potentially allowing the drugs to bypass membrane-associated resistance mechanisms. Hence, the Trojan Horse approach might enable the redesigning of old antibiotics and the development of antibacterials that target specific pathogens. Critical parts of evaluating such Trojan Horse antibacterials and improving their design are the quantification of their bacterial uptake and the identification of the pathways by which this occurs. In this minireview, we highlight a selection of the biological and chemical methods used to study the uptake of Trojan Horse antibacterials, exemplified with case studies, some of which have led to drug candidates in clinical development or approved antibiotics.
Collapse
Affiliation(s)
- James W Southwell
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Conor M Black
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | | |
Collapse
|
23
|
Derdau V. Isotopically labelled compounds in research projects of life sciences. J Labelled Comp Radiopharm 2020; 64:60. [PMID: 33226661 DOI: 10.1002/jlcr.3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Volker Derdau
- Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| |
Collapse
|
24
|
Legros F, Fernandez‐Rodriguez P, Mishra A, Weck R, Bauer A, Sandvoss M, Ruf S, Méndez M, Mora‐Radó H, Rackelmann N, Pöverlein C, Derdau V. Photoredox‐Mediated Hydrogen Isotope Exchange Reactions of Amino‐Acids, Peptides, and Peptide‐Derived Drugs. Chemistry 2020; 26:12738-12742. [DOI: 10.1002/chem.202003464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Fabien Legros
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | | | - Anurag Mishra
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Remo Weck
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Armin Bauer
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Martin Sandvoss
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Sven Ruf
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - María Méndez
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Helena Mora‐Radó
- TIDES Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Nils Rackelmann
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Christoph Pöverlein
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Volker Derdau
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| |
Collapse
|
25
|
Destro G, Horkka K, Loreau O, Buisson D, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Transition‐Metal‐Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gianluca Destro
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
- Université Paris-Saclay CEA, CNRS NIMBE 91191 Gif-sur-Yvette France
| | | | - Olivier Loreau
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - David‐Alexandre Buisson
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Lee Kingston
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Antonio Del Vecchio
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Magnus Schou
- Karolinska Institutet 17176 Stockholm Sweden
- PET Science Centre, Precision Medicine, Oncology R&D AstraZeneca Karolinska Institutet 17176 Stockholm Sweden
| | - Charles S. Elmore
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Frédéric Taran
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Thibault Cantat
- Université Paris-Saclay CEA, CNRS NIMBE 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| |
Collapse
|
26
|
Destro G, Horkka K, Loreau O, Buisson D, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Transition-Metal-Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew Chem Int Ed Engl 2020; 59:13490-13495. [PMID: 32348625 PMCID: PMC7496475 DOI: 10.1002/anie.202002341] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Indexed: 11/16/2022]
Abstract
A transition-metal-free carbon isotope exchange procedure on phenyl acetic acids is described. Utilizing the universal precursor CO2 , this protocol allows the carbon isotope to be inserted into the carboxylic acid position, with no need of precursor synthesis. This procedure enabled the labeling of 15 pharmaceuticals and was compatible with carbon isotopes [14 C] and [13 C]. A proof of concept with [11 C] was also obtained with low molar activity valuable for distribution studies.
Collapse
Affiliation(s)
- Gianluca Destro
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
- Université Paris-SaclayCEA, CNRSNIMBE91191Gif-sur-YvetteFrance
| | | | - Olivier Loreau
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - David‐Alexandre Buisson
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Lee Kingston
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaGothenburgSweden
| | - Antonio Del Vecchio
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Magnus Schou
- Karolinska Institutet17176StockholmSweden
- PET Science Centre, Precision Medicine, Oncology R&DAstraZenecaKarolinska Institutet17176StockholmSweden
| | - Charles S. Elmore
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaGothenburgSweden
| | - Frédéric Taran
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Thibault Cantat
- Université Paris-SaclayCEA, CNRSNIMBE91191Gif-sur-YvetteFrance
| | - Davide Audisio
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| |
Collapse
|
27
|
Bergare J, Kingston L, Guly DJ, Dolan J, Lewis RJ, Elmore CS. The synthesis of one H-2 labeled and two H-3 labeled leukotriene C4 synthase inhibitors. J Labelled Comp Radiopharm 2020; 63:434-441. [PMID: 32441366 DOI: 10.1002/jlcr.3862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022]
Abstract
As part of a medicinal chemistry program aimed at developing a leukotriene C4 synthase inhibitor for the treatment of asthma, two tritium-labeled and one stable isotope-labeled compounds were required. The synthesis of the tritium-labeled compounds used a standard bromination-tritiodehalogentation approach. One of the tritium-labeled compounds was observed to exchange its tritium label slowly with the solvent. The stable isotope-labeled compound was prepared in seven steps (3% overall yield) from [2 H6 ]acetone in a modification of the route used by medicinal chemistry.
Collapse
Affiliation(s)
- Jonas Bergare
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenberg, Sweden
| | - Lee Kingston
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenberg, Sweden
| | - Dominic J Guly
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, PL32 9RA, UK
| | - James Dolan
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, PL32 9RA, UK
| | - Richard J Lewis
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenberg, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenberg, Sweden
| |
Collapse
|
28
|
Transforaminal and systemic diffusion of an active agent from a zinc oxide eugenol-based endodontic sealer containing hydrocortisone—in an in vivo model. Clin Oral Investig 2020; 24:4395-4402. [DOI: 10.1007/s00784-020-03305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
|
29
|
Valero M, Kruissink T, Blass J, Weck R, Güssregen S, Plowright AT, Derdau V. C-H Functionalization-Prediction of Selectivity in Iridium(I)-Catalyzed Hydrogen Isotope Exchange Competition Reactions. Angew Chem Int Ed Engl 2020; 59:5626-5631. [PMID: 31917506 PMCID: PMC7232431 DOI: 10.1002/anie.201914220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/22/2022]
Abstract
An assessment of the C-H activation catalyst [(COD)Ir(IMes)(PPh3 )]PF6 (COD=1,5-cyclooctadiene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) in the deuteration of phenyl rings containing different functional directing groups is divulged. Competition experiments have revealed a clear order of the directing groups in the hydrogen isotope exchange (HIE) with an iridium (I) catalyst. Through DFT calculations the iridium-substrate coordination complex has been identified to be the main trigger for reactivity and selectivity in the competition situation with two or more directing groups. We postulate that the competition concept found in this HIE reaction can be used to explain regioselectivities in other transition-metal-catalyzed functionalization reactions of complex drug-type molecules as long as a C-H activation mechanism is involved.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Thomas Kruissink
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Jennifer Blass
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Alleyn T. Plowright
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| |
Collapse
|
30
|
Schreiber KJ, Lewis JD. Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A. Methods Mol Biol 2020; 1991:23-32. [PMID: 31041759 DOI: 10.1007/978-1-4939-9458-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein acetylation has emerged as a common modification that modulates multiple aspects of protein function, including localization, stability, and protein-protein interactions. It is increasingly evident that protein acetylation significantly impacts the outcome of host-microbe interactions. In order to characterize novel putative acetyltransferase enzymes and their substrates, we describe a simple protocol for the detection of acetyltransferase activity in vitro. Purified proteins are incubated with 14C-acetyl CoA and separated electrophoretically, and acetylated proteins are detected by phosphorimaging or autoradiography.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA. .,Plant Gene Expression Center, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
31
|
Valero M, Bouzouita D, Palazzolo A, Atzrodt J, Dugave C, Tricard S, Feuillastre S, Pieters G, Chaudret B, Derdau V. NHC-Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew Chem Int Ed Engl 2020; 59:3517-3522. [PMID: 31849160 PMCID: PMC7079112 DOI: 10.1002/anie.201914369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The preparation of N-heterocyclic carbene-stabilized iridium nanoparticles and their application in hydrogen isotope exchange reactions is reported. These air-stable and easy-to-handle iridium nanoparticles showed a unique catalytic activity, allowing selective and efficient hydrogen isotope incorporation on anilines using D2 or T2 as isotopic source. The usefulness of this transformation has been demonstrated by the deuterium and tritium labeling of diverse complex pharmaceuticals.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Donia Bouzouita
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées135, Avenue de Rangueil31077ToulouseFrance
| | - Alberto Palazzolo
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay91191Gif-sur-YvetteFrance
| | - Jens Atzrodt
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Christophe Dugave
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay91191Gif-sur-YvetteFrance
| | - Simon Tricard
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées135, Avenue de Rangueil31077ToulouseFrance
| | | | - Grégory Pieters
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay91191Gif-sur-YvetteFrance
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées135, Avenue de Rangueil31077ToulouseFrance
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| |
Collapse
|
32
|
Valero M, Kruissink T, Blass J, Weck R, Güssregen S, Plowright AT, Derdau V. C−H Functionalization—Prediction of Selectivity in Iridium(I)‐Catalyzed Hydrogen Isotope Exchange Competition Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Thomas Kruissink
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jennifer Blass
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Alleyn T. Plowright
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
33
|
Valero M, Bouzouita D, Palazzolo A, Atzrodt J, Dugave C, Tricard S, Feuillastre S, Pieters G, Chaudret B, Derdau V. NHC‐Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Donia Bouzouita
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135, Avenue de Rangueil 31077 Toulouse France
| | - Alberto Palazzolo
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Jens Atzrodt
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Christophe Dugave
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Simon Tricard
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135, Avenue de Rangueil 31077 Toulouse France
| | - Sophie Feuillastre
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Grégory Pieters
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay 91191 Gif-sur-Yvette France
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135, Avenue de Rangueil 31077 Toulouse France
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
34
|
Sardana M, Bergman J, Ericsson C, Kingston LP, Schou M, Dugave C, Audisio D, Elmore CS. Visible-Light-Enabled Aminocarbonylation of Unactivated Alkyl Iodides with Stoichiometric Carbon Monoxide for Application on Late-Stage Carbon Isotope Labeling. J Org Chem 2019; 84:16076-16085. [PMID: 31769679 PMCID: PMC7034930 DOI: 10.1021/acs.joc.9b02575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A visible-light-mediated late-stage aminocarbonylation of unactivated alkyl iodides with stoichiometric amounts of carbon monoxide is presented. The method provides a mild, one-step route to [carbonyl-13/14C] alkyl amides, thereby reducing radioactive waste, and handling of radioactive materials. Easily accessible and low-cost equipment and a palladium catalyst were successfully used for the synthesis of a wide range of alkyl amides.
Collapse
Affiliation(s)
- Malvika Sardana
- Early Chemical Development, Pharmaceutical Sciences , R&D, AstraZeneca , Gothenburg , Sweden
| | - Joakim Bergman
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) , BioPharmaceuticals R&D, AstraZeneca , Gothenburg , Sweden
| | - Cecilia Ericsson
- Early Chemical Development, Pharmaceutical Sciences , R&D, AstraZeneca , Gothenburg , Sweden
| | - Lee P Kingston
- Early Chemical Development, Pharmaceutical Sciences , R&D, AstraZeneca , Gothenburg , Sweden
| | - Magnus Schou
- PET Science Centre at Karolinska Institutet , Precision Medicine, Oncology R&D, AstraZeneca , Stockholm , Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , Stockholm , Sweden
| | - Christophe Dugave
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT , Université Paris-Saclay , Gif-sur-Yvette , France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT , Université Paris-Saclay , Gif-sur-Yvette , France
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences , R&D, AstraZeneca , Gothenburg , Sweden
| |
Collapse
|
35
|
Müller V, Weck R, Derdau V, Ackermann L. Ruthenium(II)‐Catalyzed Hydrogen Isotope Exchange of Pharmaceutical Drugs by C−H Deuteration and C−H Tritiation. ChemCatChem 2019. [DOI: 10.1002/cctc.201902051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Valentin Müller
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 Göttingen 37077 Germany
| | - Remo Weck
- R&DIntegrated Drug DiscoveryIsotope ChemistrySanofi-Aventis Deutschland GmbH Industriepark Höchst Frankfurt am Main 65926 Germany
| | - Volker Derdau
- R&DIntegrated Drug DiscoveryIsotope ChemistrySanofi-Aventis Deutschland GmbH Industriepark Höchst Frankfurt am Main 65926 Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 Göttingen 37077 Germany
| |
Collapse
|
36
|
Valero M, Mishra A, Blass J, Weck R, Derdau V. Comparison of Iridium(I) Catalysts in Temperature Mediated Hydrogen Isotope Exchange Reactions. ChemistryOpen 2019; 8:1183-1189. [PMID: 31497473 PMCID: PMC6718078 DOI: 10.1002/open.201900204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
The reactivity and selectivity of iridium(I) catalysed hydrogen isotope exchange (HIE) reactions can be varied by using wide range of reaction temperatures. Herein, we have done a detailed comparison study with common iridium(I) catalysts (1–6) which will help us to understand and optimize the approaches of either high selectivity or maximum deuterium incorporation. We have demonstrated that the temperature window for these studied iridium(I) catalysts is surprisingly very broad. This principle was further proven in some HIE reactions on complex drug molecules.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery, Isotope Chemistry Industriepark Höchst Frankfurt Germany
| | - Anurag Mishra
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery, Isotope Chemistry Industriepark Höchst Frankfurt Germany
| | - Jennifer Blass
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery, Isotope Chemistry Industriepark Höchst Frankfurt Germany
| | - Remo Weck
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery, Isotope Chemistry Industriepark Höchst Frankfurt Germany
| | - Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery, Isotope Chemistry Industriepark Höchst Frankfurt Germany
| |
Collapse
|
37
|
Valero M, Becker D, Jess K, Weck R, Atzrodt J, Bannenberg T, Derdau V, Tamm M. Directed Iridium‐Catalyzed Hydrogen Isotope Exchange Reactions of Phenylacetic Acid Esters and Amides. Chemistry 2019; 25:6517-6522. [DOI: 10.1002/chem.201901449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mégane Valero
- Integrated Drug DiscoverySanofi-Aventis (Deutschland) GmbH, R&D Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Daniel Becker
- Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Kristof Jess
- Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Remo Weck
- Integrated Drug DiscoverySanofi-Aventis (Deutschland) GmbH, R&D Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jens Atzrodt
- Integrated Drug DiscoverySanofi-Aventis (Deutschland) GmbH, R&D Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Thomas Bannenberg
- Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Volker Derdau
- Integrated Drug DiscoverySanofi-Aventis (Deutschland) GmbH, R&D Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Matthias Tamm
- Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
38
|
Valero M, Weck R, Güssregen S, Atzrodt J, Derdau V. Highly Selective Directed Iridium-Catalyzed Hydrogen Isotope Exchange Reactions of Aliphatic Amides. Angew Chem Int Ed Engl 2018; 57:8159-8163. [PMID: 29693316 PMCID: PMC6033151 DOI: 10.1002/anie.201804010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 12/17/2022]
Abstract
For the first time, we describe highly selective homogeneous iridium-catalyzed hydrogen isotope exchange (HIE) of unactivated C(sp3 ) centers in aliphatic amides. When using the commercially available Kerr catalyst, the HIE with a series of common antibody-drug conjugate (ADC) linker side chains proceeds with high yields, high regioselectivity, and with deuterium incorporation up to 99 %. The method is fully translatable to the specific requirements of tritium chemistry and its effectiveness was demonstrated by direct tritium labelling of a maytansinoid. The scope of the method can be extended to simple amino acids, with high HIE activity observed for glycine and alanine. In di- and tripeptides, a very interesting protecting-group-dependent tunable selectivity was observed. DFT calculations gave insight into the energies of the transition states, thereby explaining the observed selectivity and the influence of the amino acid protecting groups.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Jens Atzrodt
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| |
Collapse
|
39
|
Valero M, Weck R, Güssregen S, Atzrodt J, Derdau V. Highly Selective Directed Iridium‐Catalyzed Hydrogen Isotope Exchange Reactions of Aliphatic Amides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jens Atzrodt
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
40
|
Bauer C, Luu T, Eggimann F, Bross P, Gertsch W, Hu C, Ramstein P, Bourgailh J, Glänzel A, Dix I, Guenat C, Soldermann N, Litherland K, Desrayaud S, Hengy JC, Pearson D, Blanz J, Burkhart C. Design of A Metabolically Stable Tritium-Tracer of the PI3Kδ-Inhibitor CDZ173 (Leniolisib) as a Tool to Study Liver Metabolites. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Carsten Bauer
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | - Tong Luu
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | | | - Patrick Bross
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | | | - Cheng Hu
- Global Discovery Chemistry; NIBR; Basel
| | | | | | - Albrecht Glänzel
- Isotope Laboratory, PK Sciences; Novartis Institute for Biomedical Research (NIBR); Basel
| | - Ina Dix
- Global Discovery Chemistry; NIBR; Basel
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity: In vitro characterization, molecular docking, 125I-radiolabeling and in vivo biodistribution studies. Int J Pharm 2018; 545:240-253. [PMID: 29733973 DOI: 10.1016/j.ijpharm.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
Abstract
A10, (3-phenylacetylamino-2,6-piperidinedione), is a natural peptide with broad antineoplastic activity. Recently, in vitro antitumor effect of a new A10 analog [3-(4-methoxybenzoylamino)-2,6-piperidinedione] (MPD) has been verified. However, poor aqueous solubility represents an obstacle towards intravenous formulation of MPD and impedes successful in vivo antitumor activity. To surmount such limitation, MPD microemulsion (MPDME) was developed. A 3122 full factorial design using Design-Expert® software was adopted to study the influence of different parameters and select the optimum formulation (MPDME1). Transmission electron microscopy (TEM) displayed spherical droplets of MPDME1. The cytotoxicity of MPDME1 in Michigan Cancer Foundation 7 (MCF-7) breast cancer cell line exceeded that of MPD solution (MPDS) and tamoxifen. Compatibility with injectable diluents, in vitro hemolytic studies and in vivo histopathological examination confirmed the safety of parenteral application of MPDME1. Molecular docking results showed almost same binding affinity of A10, MPD and 125I-MPD with histone deacetylase 8 (HDAC8) receptor. Accordingly, radioiodination of MPDME1 and MPDS was done via direct electrophilic substitution reaction. Biodistribution of 125I-MPDME1 and 125I-MPDS in normal and tumor (ascites and solid) bearing mice showed high accumulation of 125I-MPDME1 in tumor tissues. Overall, the results proved that MPDME represents promising parenteral delivery system capable of improving antineoplastic activity of MPD.
Collapse
|
42
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
43
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
44
|
Romanova IV, Alekseev AA, Richter VA, Gruntenko NE, Agafontsev AM, Karpova EK. A synthesis of tritium-labeled juvenile hormone and radiometric analysis of the enzymatic hydrolysis level. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Burhop A, Weck R, Atzrodt J, Derdau V. Hydrogen-Isotope Exchange (HIE) Reactions of Secondary and Tertiary Sulfonamides and Sulfonylureas with Iridium(I) Catalysts. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601599] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Annina Burhop
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| | - Remo Weck
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| | - Jens Atzrodt
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| | - Volker Derdau
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| |
Collapse
|
46
|
Jess K, Derdau V, Weck R, Atzrodt J, Freytag M, Jones PG, Tamm M. Hydrogen Isotope Exchange with Iridium(I) Complexes Supported by Phosphine-Imidazolin-2-imine P,N Ligands. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601291] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kristof Jess
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Volker Derdau
- Sanofi; R&D, Integrated Drug Discovery, Med. Chem., Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Remo Weck
- Sanofi; R&D, Integrated Drug Discovery, Med. Chem., Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jens Atzrodt
- Sanofi; R&D, Integrated Drug Discovery, Med. Chem., Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
47
|
Sonopo MS, Venter K, Winks S, Marjanovic-Painter B, Morgans GL, Zeevaart JR. Carbon-14 radiolabelling and tissue distribution evaluation of a potential anti-TB compound. J Labelled Comp Radiopharm 2016; 59:264-9. [PMID: 27109016 DOI: 10.1002/jlcr.3391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/26/2023]
Abstract
This paper describes a five-step synthesis of a carbon-14-labelled pyrazole compound (11). A total of 2.96 MBq of 11 was obtained with the specific activity of 2242.4 MBq/mmol. The radiochemical purity was >99%, and the overall radiochemical yield was 60% based on the [(14) C6 ] 4-bromoaniline starting material. Biodistribution results showed that the radiotracer (administrated orally) has a high accumulation in the small intestine, large intestine and liver of both non-infected and tuberculosis (TB)-infected mice. Therefore, this suggests that compound 11 undergoes hepatobiliary clearance. The compound under investigation has been found to be slowly released from the liver between 2 and 8 h. The study revealed that 11 has no affinity for TB cells.
Collapse
Affiliation(s)
| | - Kobus Venter
- Medical Research Council of South Africa, Pretoria, South Africa
| | - Susan Winks
- iThemba Pharmaceuticals (Pty) Ltd, Johannesburg, South Africa
| | | | | | - Jan R Zeevaart
- DST/NWU, Preclinical Drug Development Platform, North West University, Potchefstroom, South Africa
| |
Collapse
|
48
|
Filer CN, Maniscalco MP, Thayer SL. GMP synthesis of carbon-14 labelled substances. J Labelled Comp Radiopharm 2016; 59:233-7. [PMID: 26695715 DOI: 10.1002/jlcr.3364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 11/11/2022]
Abstract
This review discusses the process of preparing and analyzing carbon-14 labelled substances under good manufacturing practice.
Collapse
Affiliation(s)
- Crist N Filer
- PerkinElmer Health Sciences, Inc., 940 Winter Street, Waltham, MA, 02451, USA
| | - Mario P Maniscalco
- PerkinElmer Health Sciences, Inc., 940 Winter Street, Waltham, MA, 02451, USA
| | - Sandra L Thayer
- PerkinElmer Health Sciences, Inc., 940 Winter Street, Waltham, MA, 02451, USA
| |
Collapse
|
49
|
İlem-Özdemir D, Karavana SY, Şenyiğit ZA, Çalışkan Ç, Ekinci M, Asikoglu M, Baloğlu E. Radiolabeling and cell incorporation studies of gemcitabine HCl microspheres on bladder cancer and papilloma cell line. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
İlem-Özdemir D, Üstündağ-Okur N, Ay Şenyiğit Z, Oruç N, Aşıkoğlu M, Özütemiz Ö, Karasulu HY. Effect of microemulsion formulation on biodistribution of 99mTc-Aprotinin in acute pancreatitis models induced rats. Drug Deliv 2016; 23:3055-3062. [PMID: 26923781 DOI: 10.3109/10717544.2016.1145306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Aprotinin is a monomeric globular polypeptide, which derived from bovine lung tissue and theoretically attractive molecule in ameliorating the effects of acute pancreatitis. Acute pancreatitis is an inflammatory condition of the pancreas that is painful and at times deadly. Over the following two decades Aprotinin therapeutic potential on pancreatitis is proven experimentally, its clinical therapeutic success is limited due to low targeting to pancreas. OBJECTIVE The aim of this study was to evaluate the biodistribution of Technetium-99m (99mTc)-Aprotinin solution (99mTc-Aprotinin-S) and 99mTc-Aprotinin loaded microemulsion, which was prepared for the aim of treatment for acute pancreatitis. METHOD Aprotinin was radiolabeled with 99mTc. Radiochemical purity was determined with radioactive thin layer chromatography studies. 99mTc-Aprotinin-S and 99mTc-Aprotinin loaded microemulsion (99mTc-Aprotinin-M) was administered to acute edematous, severe necrotizing pancreatitis and air pouch model induced rats. Tissue distribution of Aprotinin was investigated with gamma scintigraphy and biodistribution studies. RESULTS Aprotinin was radiolabeled by 99mTc with high radiochemical purity (95.430 ± 0.946%). The complex was found to be stable at room temperature up to 6 h. Animal studies have shown that similar to that of other small proteins Aprotinin is accumulated primarily in the kidney. The scintigraphy and biodistribution studies showed that, while i.v. administration of 99mTc-Aprotinin-S distributed mostly in kidneys and bladder, 99mTc-Aprotinin-M, with droplet size of 64.550 ± 3.217 nm, has high uptake in liver, spleen and pancreas. CONCLUSION This might be concluding that microemulsions may be suggested as promising formulations for selectively targeting Aprotinin to pancreas inflammation.
Collapse
Affiliation(s)
- Derya İlem-Özdemir
- a Department of Radiopharmacy , Faculty of Pharmacy, Ege University , Izmir , Turkey
| | - Neslihan Üstündağ-Okur
- b Department of Pharmaceutical Technology , School of Pharmacy, Istanbul Medipol University , Istanbul , Turkey
| | | | - Nevin Oruç
- d Department of Gastroenterology , Faculty of Medicine, Ege University , Izmir , Turkey
| | - Makbule Aşıkoğlu
- a Department of Radiopharmacy , Faculty of Pharmacy, Ege University , Izmir , Turkey
| | - Ömer Özütemiz
- d Department of Gastroenterology , Faculty of Medicine, Ege University , Izmir , Turkey
| | - H Yeşim Karasulu
- c Department of Pharmaceutical Technology , Faculty of Pharmacy , and
| |
Collapse
|