1
|
Haveman LYF, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [ 18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem 2023; 8:28. [PMID: 37824021 PMCID: PMC10570257 DOI: 10.1186/s41181-023-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction. MAIN BODY Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling. CONCLUSION Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.
Collapse
Affiliation(s)
- Lizeth Y F Haveman
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Neuroscience Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Kniess T, Zessin J, Mäding P, Kuchar M, Kiss O, Kopka K. Synthesis of [ 18F]FMISO, a hypoxia-specific imaging probe for PET, an overview from a radiochemist's perspective. EJNMMI Radiopharm Chem 2023; 8:5. [PMID: 36897480 PMCID: PMC10006378 DOI: 10.1186/s41181-023-00190-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND [18F]fluoromisonidazole ([18F]FMISO, 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole) is a commonly used radiotracer for imaging hypoxic conditions in cells. Since hypoxia is prevalent in solid tumors, [18F]FMISO is in clinical application for decades to explore oxygen demand in cancer cells and the resulting impact on radiotherapy and chemotherapy. RESULTS Since the introduction of [18F]FMISO as positron emission tomography imaging agent in 1986, a variety of radiosynthesis procedures for the production of this hypoxia tracer has been developed. This paper gives a brief overview on [18F]FMISO radiosyntheses published so far from its introduction until now. From a radiopharmaceutical chemist's perspective, different precursors, radiolabeling approaches and purification methods are discussed as well as used automated radiosynthesizers, including cassette-based and microfluidic systems. CONCLUSION In a GMP compliant radiosynthesis using original cassettes for FASTlab we produced [18F]FMISO in 49% radiochemical yield within 48 min with radiochemical purities > 99% and molar activities > 500 GBq/µmol. In addition, we report an easy and efficient radiosynthesis of [18F]FMISO, based on in-house prepared FASTlab cassettes, providing the radiotracer for research and preclinical purposes in good radiochemical yields (39%), high radiochemical purities (> 99%) and high molar activity (> 500 GBq/µmol) in a well-priced option.
Collapse
Affiliation(s)
- Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Jörg Zessin
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Peter Mäding
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Oliver Kiss
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
3
|
Rapid Purification and Formulation of Radiopharmaceuticals via Thin-Layer Chromatography. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238178. [PMID: 36500272 PMCID: PMC9738419 DOI: 10.3390/molecules27238178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Before formulating radiopharmaceuticals for injection, it is necessary to remove various impurities via purification. Conventional synthesis methods involve relatively large quantities of reagents, requiring high-resolution and high-capacity chromatographic methods (e.g., semi-preparative radio-HPLC) to ensure adequate purity of the radiopharmaceutical. Due to the use of organic solvents during purification, additional processing is needed to reformulate the radiopharmaceutical into an injectable buffer. Recent developments in microscale radiosynthesis have made it possible to synthesize radiopharmaceuticals with vastly reduced reagent masses, minimizing impurities. This enables purification with lower-capacity methods, such as analytical HPLC, with a reduction of purification time and volume (that shortens downstream re-formulation). Still, the need for a bulky and expensive HPLC system undermines many of the advantages of microfluidics. This study demonstrates the feasibility of using radio-TLC for the purification of radiopharmaceuticals. This technique combines high-performance (high-resolution, high-speed separation) with the advantages of a compact and low-cost setup. A further advantage is that no downstream re-formulation step is needed. Production and purification of clinical scale batches of [18F]PBR-06 and [18F]Fallypride are demonstrated with high yield, purity, and specific activity. Automating this radio-TLC method could provide an attractive solution for the purification step in microscale radiochemistry systems.
Collapse
|
4
|
Cucchi C, Bogni A, Casanova C, Seregni E, Pascali C. An improved one-pot preparation of [ 18 F]FMISO based on solid phase extraction purification: Pitfalls on the analytical method reported in the Ph.Eur.'s monograph. J Labelled Comp Radiopharm 2021; 65:6-12. [PMID: 34613615 DOI: 10.1002/jlcr.3954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
By adapting previously reported reaction conditions, [18 F]FMISO was synthesized using a TracerLab FX-FDG module in 31 min from no carrier added [18 F]fluoride in 56% radiochemical yield. A novel and simple purification setup based on disposable cartridges was developed allowing the radiopharmaceutical to be obtained in high radiochemical purity (>99.5%) and with chemical impurities far below the Ph.Eur.'s thresholds. Moreover, the study pinpointed some shortcomings of the high-performance liquid chromatography (HPLC) method reported in the dedicated Ph.Eur's monograph.
Collapse
Affiliation(s)
- Claudio Cucchi
- IRCCS National Cancer Institute Foundation, Milan, Italy
| | - Anna Bogni
- IRCCS National Cancer Institute Foundation, Milan, Italy
| | | | - Ettore Seregni
- IRCCS National Cancer Institute Foundation, Milan, Italy
| | | |
Collapse
|
5
|
Zhao C, Liu C, Tang J, Xu Y, Xie M, Chen Z. An Efficient Automated Radiosynthesis and Bioactivity Confirmation of VMAT2 Tracer [ 18F]FP-(+)-DTBZ. Mol Imaging Biol 2021; 22:265-273. [PMID: 31165386 DOI: 10.1007/s11307-019-01379-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study was to optimize the radiolabeling method of [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ) to fulfill the demand of preclinical and clinical application. PROCEDURES Optimized labeling conditions were performed by altering the molar ratio of precursor to base (P/B), base species, solvents, reaction temperature, reaction time, and precursor concentration through manual radiosynthesis of [18F]FP-(+)-DTBZ. The conditions with the highest radiochemical yield (RCY) were applied to automated radiosynthesis, and the crude product was purified with a Sep-Pak Plus C18 cartridge. Quality control and stability of [18F]FP-(+)-DTBZ were carried out by HPLC. In vitro cellular uptake and blocking assays were conducted in human neuroblastoma cell line SH-SY5Y. In vivo imaging with small animal positron emission tomography (microPET) was performed with Sprague-Dawley rats. RESULTS Under the optimized conditions (P/K2CO3 = 1:8, heating at 120 °C for 3 min in dimethyl sulfoxide), an RCY of 88.7 % was obtained with 1.0 mg precursor. The optimized reaction conditions were successfully applied to an automated module and gave a high activity yield (AY) of 30-55 % in about 40 min with a > 99.0 % radiochemical purity (RCP) and a > 44.4 GBq/μmol molar activity (Am). Stability test displayed that the RCP retained > 98.0 % in 8 h in saline and in phosphate buffer saline (PBS, pH 7.4). In vitro cellular uptake assay showed accumulation of [18F]FP-(+)-DTBZ in SH-SY5Y cells, which could be significantly inhibited by vesicular monoamine transporter 2 (VMAT2) inhibitor DTBZ. MicroPET images of rat brain displayed that the striatum showed the highest uptake with a standardized uptake value (SUV) of 3.91 ± 0.30 at ~ 70 min. Co-injection with DTBZ (1.0 mg/kg) resulted in a 75 % decrease of the striatal SUV, confirming the specificity of [18F]FP-(+)-DTBZ to VMAT2. CONCLUSIONS We obtained an optimized radiolabeling method of [18F]FP-(+)-DTBZ and successfully applied it to a commercial available module. The automated synthesis gave a high AY and RCP of [18F]FP-(+)-DTBZ with high and specific binding to VMAT2, facilitating its routine application for VMAT2 tracing.
Collapse
Affiliation(s)
- Chao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunyi Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jie Tang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yingjiao Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China. .,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
6
|
Clinical Evaluation of 18F-PI-2620 as a Potent PET Radiotracer Imaging Tau Protein in Alzheimer Disease and Other Neurodegenerative Diseases Compared With 18F-THK-5351. Clin Nucl Med 2020; 45:841-847. [PMID: 32910050 DOI: 10.1097/rlu.0000000000003261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE PET is a useful tool for detecting the presence and extent of brain tau accumulation. However, most first-generation tau PET tracers are limited for high off-target binding and detection of tau in non-Alzheimer disease (AD). This study evaluated potential clinical applications of F-PI-2620 as a novel PET tracer with a high binding affinity for tau deposition in AD and non-AD tauopathies. METHODS Twenty-six participants diagnosed with either mild cognitive impairment, probable AD, frontotemporal dementia, or parkinsonism, as well as healthy controls underwent a 60- to 90-minute brain PET scan after 7 mci (259 MBq) injection of F-PI-2620. Some participants had previous PET scans using F-THK-5351 or F-FP-CIT for dopamine transporter imaging. RESULTS All participants showed no increase in off-target binding in basal ganglia on F-PI-2620 PET images, as noted for first-generation tau tracers. Aβ+ mild cognitive impairment or AD patients showed diverse cortical F-PI-2620 uptake in frontotemporoparietal cortex that correlated with Mini-Mental Status Examination (ρ = -0.692, P = 0.013). Aβ+ Parkinson disease with dementia and (Aβ unknown) primary progressive aphasia patients also showed increased F-PI-2620 uptakes in the frontotemporoparietal cortex. Patients with parkinsonism showed increased uptakes in the pallidum compared with Aβ- healthy controls (left: 1.41 ± 0.14 vs 1.04 ± 0.13, P = 0.014; right: 1.18 ± 0.16 vs 0.95 ± 0.07, P = 0.014). CONCLUSIONS F-PI-2620 PET might be a sensitive tool to detect cortical tau deposits in patients with Aβ+ AD and Aβ+ non-AD tauopathies. Furthermore, this study showed that "off-target" binding in the basal ganglia does not affect F-PI-2620.
Collapse
|
7
|
Orlovskaya V, Antuganov D, Fedorova O, Timofeev V, Krasikova R. Tetrabutylammonium tosylate as inert phase-transfer catalyst: The key to high efficiency SN2 radiofluorinations. Appl Radiat Isot 2020; 163:109195. [DOI: 10.1016/j.apradiso.2020.109195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
|
8
|
Lee SJ, Ko NR, Oh SJ. Optimization of the Synthesis of
18
F‐D
2
‐Deprenyl With Mild
18
F
‐Fluorination and Minimum Precursor Input for
PET
Imaging of Neuroinflammation. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical CenterUniversity of Ulsan College of Medicine Seoul 05505 Republic of Korea
| | - Na Re Ko
- Department of Nuclear Medicine, Asan Medical CenterUniversity of Ulsan College of Medicine Seoul 05505 Republic of Korea
- Department of Nuclear MedicineAsan Institute for Life Sciences, Asan Medical Center Seoul 05505 Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear MedicineAsan Institute for Life Sciences, Asan Medical Center Seoul 05505 Republic of Korea
| |
Collapse
|
9
|
Zhang L, Zhang A, Yao X, Zhang Y, Liu F, Hong H, Zha Z, Liu Y, Wu Z, Qiao J, Zhu L, Kung HF. An improved preparation of [ 18 F]AV-45 by simplified solid-phase extraction purification. J Labelled Comp Radiopharm 2020; 63:108-118. [PMID: 31697847 DOI: 10.1002/jlcr.3813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Amyvid (florbetapir f18, [18 F]AV-45, [18 F]5) was the first FDA-approved positron emission tomography imaging agent targeting β-amyloid (Aβ) plaques for assisting the diagnosis of Alzheimer disease. This work aimed to improve the [18 F]AV-45 ([18 F]5) preparation by using solid-phase extraction (SPE) purification. [18 F]AV-45 ([18 F]5) was synthesized by direct nucleophilic radiofluorination of O-tosylated precursor (1 mg) at 120°C in anhydrous dimethyl sulfoxide (DMSO), followed by acid hydrolysis of the N-Boc protecting group. Purification was accomplished by loading the crude reaction mixture to a cartridge (Oasis HLB 3 cc) and eluting with different combinations of solvents. This method removed the chemical impurity while leaving [18 F]AV-45 ([18 F]5) on the cartridge. The final dose was eluted by ethanol. [18 F]AV-45 ([18 F]5) was produced within 51 minutes (radiochemical yield 42.7 ± 5.9%, decay corrected, n = 3), and the radiochemical purity was greater than 95%. Total chemical impurity per batch (24.1 ± 2.7 μg per batch) was below the limit described in the package insert of Amyvid, florbetapir f18 (chemical mass: less than 50 μg/dose). In summary, [18 F]AV-45 ([18 F]5) was produced efficiently and reproducibly using a cartridge-based SPE purification. This method brings the process closer for routine preparation, similar to the commercially used [18 F]FDG.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Aili Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xinyue Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Futao Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhihao Zha
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yajing Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hank F Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Molavipordanjani S, Tolmachev V, Hosseinimehr SJ. Basic and practical concepts of radiopharmaceutical purification methods. Drug Discov Today 2018; 24:315-324. [PMID: 30278224 DOI: 10.1016/j.drudis.2018.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/16/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Abstract
The presence of radiochemical impurities in a radiopharmaceutical contributes to an unnecessary radiation burden for the patients or to an undesirable high radioactivity background, which reduces the imaging contrast or therapeutic efficacy. Therefore, if the radiolabeling process results in unsatisfactory radiochemical purity, a purification step is unavoidable. A successful purification process requires a profound knowledge about the radiopharmaceuticals of interest ranging from structural features to susceptibility to different conditions. Most radiopharmaceutical purification methods are based on solid-phase extraction (SPE), high-performance liquid chromatography (HPLC), size exclusion chromatography (SEC), ion-exchange chromatography (IEC), and liquid-liquid extraction (LLE). Here, we discuss the basic and applied concepts of these purifications methods as well as their advantages and limitations.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
|
12
|
Lee SJ, Oh SJ, Cho EH, Kim DH, Furumoto S, Okamura N, Kim JS. Full automatic synthesis of [18F]THK-5351 for tau protein PET imaging in Alzheimer’s disease patients: 1 year experience. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
A novel approach to the synthesis of [18F]flumazenil, a radioligand for PET imaging of central benzodiazepine receptors. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1376-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Mossine AV, Thompson S, Brooks AF, Sowa AR, Miller JM, Scott PJH. Fluorine-18 patents (2009-2015). Part 2: new radiochemistry. Pharm Pat Anal 2016; 5:319-49. [PMID: 27610753 PMCID: PMC5138992 DOI: 10.4155/ppa-2016-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Fluorine-18 ((18)F) is one of the most common positron-emitting radionuclides used in the synthesis of positron emission tomography radiotracers due to its ready availability, convenient half-life and outstanding imaging properties. In Part 1 of this review, we presented the first analysis of patents issued for novel radiotracers labeled with fluorine-18. In Part 2, we follow-up with a focus on patents issued for new radiochemistry methodology using fluorine-18 issued between January 2009 and December 2015.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Stephen Thompson
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
| | - Alexandra R Sowa
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Jason M Miller
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Peter JH Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Antuganov DO, Ryzhkova DV, Zykov MP. Methods for synthesis of [18F]fluoromisonidazole, a radiopharmaceutical for imaging of hypoxic foci. RADIOCHEMISTRY 2015. [DOI: 10.1134/s1066362215060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kumar P, Bacchu V, Wiebe LI. The chemistry and radiochemistry of hypoxia-specific, radiohalogenated nitroaromatic imaging probes. Semin Nucl Med 2015; 45:122-35. [PMID: 25704385 DOI: 10.1053/j.semnuclmed.2014.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia is prevalent in many solid tumors. Hypoxic tumors tend to exhibit rapid growth and aberrant vasculature, which lead to oxygen (O2) depletion and impaired drug delivery. The reductive environment in hypoxic tumors alters cellular metabolism, which can trigger transcriptional responses; induce genetic alterations; promote invasion, metastasis, resistance to radiotherapy and chemotherapy, tumor progression, and recurrence; and leads to poor local control and reduced survival rates. Therefore, exploiting the reductive microenvironment in hypoxic tumors by delivering electron-affinic, O2-mimetic radioactive drugs that bioreductively activate selectively in the hypoxic microenvironment offers a logical approach to molecular imaging of focal hypoxia. Because these agents also radiosensitize hypoxic cells, they provide an innovative approach to the therapy management of such tumors. To date, nuclear imaging of hypoxic tumor has proven to be clinically effective, whereas chemical radiosensitization by these compounds has not been helpful. The current review provides an insight into the chemistry, radiochemistry, and purification strategies for selected nitroaromatics that directly exploit the bioreductive environment in hypoxic cells. Both experimental and calculated single-electron reduction potentials of electron-affinic compounds, nitroimidazoles in particular, correlate with in vitro radiosensitizing properties, making them preferred choices for use as radiopharmaceuticals for diagnostic imaging and as sensitizers to enhance the killing effects of low-energy-transfer x-rays (O2-mimetic radiosensitization). Extensive research and careful drug design have led to the development of several potentially useful hypoxia-targeting drugs, for example, [(18)F]FAZA, [(18)F]FMISO, [(18)F]EF5, and [(123)I]IAZA, that accrue selectively in hypoxic cells. These molecular probes are now globally used in clinical hypoxia imaging, including cancer. Future innovative developments must, however, consider hypoxia-selective molecular processes and the physicochemical properties of the drugs that dictate their biodistribution, hypoxia-selective accumulation, pharmacokinetics, clearance, biochemical behavior, and metabolism. This will facilitate their ultimate transformation to effective molecular theranostics, leading to improved multimodal management of cancer.
Collapse
Affiliation(s)
- Piyush Kumar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | - Veena Bacchu
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|