Shi S, Yao L, Li L, Wu Z, Zha Z, Kung HF, Zhu L, Fang DC. Synthesis of novel technetium-99m tricarbonyl-HBED-CC complexes and structural prediction in solution by density functional theory calculation.
ROYAL SOCIETY OPEN SCIENCE 2019;
6:191247. [PMID:
31827858 PMCID:
PMC6894603 DOI:
10.1098/rsos.191247]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
HBED-CC (N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylene diamine-N,N'-diacetic acid, L1 ) is a common bifunctional chelating agent in preparation of 68Ga-radiopharmaceuticals. Due to its high stability constant for the Ga3+ complex (logKGaL = 38.5) and its acyclic structure, it is well known for a rapid and efficient radiolabelling at ambient temperature with Gallium-68 and its high in vivo stability. [99mTc][Tc(CO)3(H2O)3]+ is an excellent precursor for radiolabelling of biomolecules. The aim of this study was to develop a novel preparation method of 99mTc-HBED-CC complexes. In this study, HBED-CC-NI (2,2'-(ethane-1,2-diylbis((2-hydroxy-5-(3-((2-(2-nitro-1H-imidazol-1-yl)ethyl)amino)-3-oxopropyl)benzyl)-azanediyl))-diacetic acid, L2 ), a derivative of HBED-CC, was designed and synthesized. Both L1 and L2 were radiolabelled by [99mTc][Tc(CO)3(H2O)3]+ successfully for the first time. In order to explore the coordination mode of metal and chelates, non-radioactive Re(CO)3 L1 and Re(CO)3 L2 were synthesized and characterized spectroscopically. Tc(CO)3 L1 and Tc(CO)3 L2 in solution were calculated by density functional theory and were analysed with radio-HPLC chromatograms. It showed that [99mTc]Tc(CO)3 L2 forms two stable diastereomers in solution, which is similar to those of [68Ga]Ga-HBED-CC complexes. Natural bond orbital analysis through the natural population charges revealed a charge transfer between [99mTc][Tc(CO)3]+ and L1 or L2 . The experimental results showed that tricarbonyl technetium might form stable complex with HBED-CC derivatives, which is useful for the future application of using HBED-CC as a bifunctional chelating agent in developing new 99mTc-radiopharmaceuticals as diagnostic imaging agents.
Collapse