1
|
Ford J, Ortalli S, Chen Z, Sap JBI, Tredwell M, Gouverneur V. Expedient Access to 18F-Fluoroheteroarenes via Deaminative Radiofluorination of Aniline-Derived Pyridinium Salts. Angew Chem Int Ed Engl 2024; 63:e202404945. [PMID: 38624193 DOI: 10.1002/anie.202404945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Herein, we disclose that pyridinium salts derived from abundant (hetero)anilines represent a novel precursor class for nucleophilic aromatic substitution reactions with [18F]fluoride. The value of this new 18F-fluorodeamination is demonstrated with the synthesis of over 30 structurally diverse and complex heteroaryl 18F-fluorides, several derived from scaffolds that were yet to be labelled with fluorine-18. The protocol tolerates heteroarenes and functionalities commonly found in drug discovery libraries, and is amenable to scale-up and automation on a commercial radiosynthesiser.
Collapse
Affiliation(s)
- Joseph Ford
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Sebastiano Ortalli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Jeroen B I Sap
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
- Current address: Department of Translational Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
- School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
2
|
Haveman LYF, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [ 18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem 2023; 8:28. [PMID: 37824021 PMCID: PMC10570257 DOI: 10.1186/s41181-023-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction. MAIN BODY Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling. CONCLUSION Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.
Collapse
Affiliation(s)
- Lizeth Y F Haveman
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Neuroscience Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
4
|
Grajales D, Picot F, Shams R, Dallaire F, Sheehy G, Alley S, Barkati M, Delouya G, Carrier JF, Birlea M, Trudel D, Leblond F, Ménard C, Kadoury S. Image-guided Raman spectroscopy navigation system to improve transperineal prostate cancer detection. Part 2: in-vivo tumor-targeting using a classification model combining spectral and MRI-radiomics features. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220064GR. [PMID: 36085571 PMCID: PMC9459023 DOI: 10.1117/1.jbo.27.9.095004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/12/2022] [Indexed: 06/01/2023]
Abstract
SIGNIFICANCE The diagnosis and treatment of prostate cancer (PCa) are limited by a lack of intraoperative information to accurately target tumors with needles for biopsy and brachytherapy. An innovative image-guidance technique using optical devices could improve the diagnostic yield of biopsy and efficacy of radiotherapy. AIM To evaluate the performance of multimodal PCa detection using biomolecular features from in-situ Raman spectroscopy (RS) combined with image-based (radiomics) features from multiparametric magnetic resonance images (mpMRI). APPROACH In a prospective pilot clinical study, 18 patients were recruited and underwent high-dose-rate brachytherapy. Multimodality image fusion (preoperative mpMRI with intraoperative transrectal ultrasound) combined with electromagnetic tracking was used to navigate an RS needle in the prostate prior to brachytherapy. This resulting dataset consisted of Raman spectra and co-located radiomics features from mpMRI. Feature selection was performed with the constraint that no more than 10 features were retained overall from a combination of inelastic scattering spectra and radiomics. These features were used to train support vector machine classifiers for PCa detection based on leave-one-patient-out cross-validation. RESULTS RS along with biopsy samples were acquired from 47 sites along the insertion trajectory of the fiber-optics needle: 26 were confirmed as benign or grade group = 1, and 21 as grade group >1, according to histopathological reports. The combination of the fingerprint region of the RS and radiomics showed an accuracy of 83% (sensitivity = 81 % and a specificity = 85 % ), outperforming by more than 9% models trained with either spectroscopic or mpMRI data alone. An optimal number of features was identified between 6 and 8 features, which have good potential for discriminating grade group ≥1 / grade group <1 (accuracy = 87 % ) or grade group >1 / grade group ≤1 (accuracy = 91 % ). CONCLUSIONS In-situ Raman spectroscopy combined with mpMRI radiomics features can lead to highly accurate PCa detection for improved in-vivo targeting of biopsy sample collection and radiotherapy seed placement.
Collapse
Affiliation(s)
- David Grajales
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Fabien Picot
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Roozbeh Shams
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Guillaume Sheehy
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Stephanie Alley
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Maroie Barkati
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Guila Delouya
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Jean-Francois Carrier
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Mirela Birlea
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Dominique Trudel
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Frédéric Leblond
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Institut du Cancer de Montréal, Montreal, Québec, Canada
| | - Cynthia Ménard
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Samuel Kadoury
- Polytechnique Montréal, Montreal, Québec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
5
|
Hoareau R, Bach-Gansmo T, Cumming P, Olberg DE. A new automated and putatively versatile synthesis of the PSMA-ligand derivative [ 18F]DCFPyL using the FASTlab TM synthesizer. EJNMMI Radiopharm Chem 2022; 7:10. [PMID: 35507241 PMCID: PMC9068851 DOI: 10.1186/s41181-022-00157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Noninvasive molecular imaging using peptides and biomolecules labelled with positron emitters has become important for detection of cancer and other diseases with PET (positron emission tomography). The positron emitting radionuclide fluorine-18 is widely available in high yield from cyclotrons and has favorable decay (t1/2 109.7 min) and imaging properties. 18F-Labelling of biomolecules and peptides for use as radiotracers is customarily achieved in a two-step approach, which can be challenging to automate. 6-[18F]Fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP) is a versatile 18F-prosthetic group for this purpose, which can be rapidly be produced in an one-step approach on solid support. This work details an automated procedure on the cassette-based GE FASTlab™ platform for the labeling of a peptidomimetic, exemplified by the case of using the Glu-CO-Lys motif to produce [18F]DCFPyL, a ligand targeting the prostate specific membrane antigen (PSMA). Results From fluorine-18 delivery a fully automated two-step radiosynthesis of [18F]DCFPyL was completed in 56 min with an overall end of synthesis yield as high as 37% using solid phase extraction (SPE) purification on the GE FASTlab™ platform. Conclusions Putatively, this radiolabeling methodology is inherently amenable to automation with a diverse set of synthesis modules, and it should generalize for production of a broad spectrum of biomolecule-based radiotracers for use in PET imaging.
Collapse
Affiliation(s)
| | | | - Paul Cumming
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.,Institute of Nuclear Medicine, Inelspital, University of Bern, Bern, Switzerland
| | - Dag Erlend Olberg
- Norsk Medisinsk Syklotronsenter AS, Postboks 4950, 0424, Nydalen, Oslo, Norway. .,School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Khan NUH, Corlett A, Hutton CA, Haskali MB. Investigation of Fluorine-18 Labelled Peptides for Binding to Cholecystokinin-2 Receptors with High Affinity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractMany cancers of neuroendocrine origin overexpress cholecystokinin-2 receptors (CCK-2R) including medullary thyroid cancer, small cell lung cancer and other lung carcinoids. Fluorine-18 labelled peptides targeting CCK-2R enable direct visualization and quantification of this receptor in vivo using positron emission tomography imaging. CP04 1 and MG11 2 are two previously described truncated peptides derived from the native CCK-2R hormone ligand, gastrin. The N-terminus of the MG11 2 octopeptide was chemically modified with various fluorine containing aromatic (4-fluorobenzoate), heterocyclic (6-fluoronicotinate) and aliphatic (2-fluoropropionate) moieties. To assess the impact these modifications had on CCK-2R binding, ligand-binding assays were conducted using A431 cells overexpressing human CCK-2R. MG11 2 modified by 4-fluorobenzoate (FB-MG11 3) demonstrated the highest binding affinity (0.20 nM) followed by MG11 2 modified by 6-fluoronicotinate (FNic-MG11 4; 0.74 nM) and 2-fluoropropionate (FP-MG11 5; 1.80 nM), respectively. Whilst indirect labelling of MG11 2 using fluorine-18 labelled activated esters of fluorobenzoate and 6-fluoronicotinate was unsuccessful, direct fluorine-18 labelling at the N-terminus modified with 6-nitronicotinate afforded a 47.6% radiochemical yield of [18F]FNic-MG11. Unfortunately, [18F]FNic-MG11 4 was chemically unstable, decomposing slowly through defluorination, thereby impeding any further work with this radiotracer.
Collapse
|
7
|
Grajales D, Kadoury S, Shams R, Barkati M, Delouya G, Béliveau-Nadeau D, Nicolas B, Le WT, Benhacene-Boudam MK, Juneau D, DaSilva JN, Carrier JF, Hautvast G, Ménard C. Performance of an integrated multimodality image guidance and dose-planning system supporting tumor-targeted HDR brachytherapy for prostate cancer. Radiother Oncol 2021; 166:154-161. [PMID: 34861267 DOI: 10.1016/j.radonc.2021.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Advances in high-dose-rate brachytherapy to treat prostate cancer hinge on improved accuracy in navigation and targeting while optimizing a streamlined workflow. Multimodal image registration and electromagnetic (EM) tracking are two technologies integrated into a prototype system in the early phase of clinical evaluation. We aim to report on the system's accuracy and workflow performance in support of tumor-targeted procedures. MATERIALS AND METHODS In a prospective study, we evaluated the system in 43 consecutive procedures after clinical deployment. We measured workflow efficiency and EM catheter reconstruction accuracy. We also evaluated the system's MRI-TRUS registration accuracy with/without deformation, and with/without y-axis rotation for urethral alignment at initialization. RESULTS The cohort included 32 focal brachytherapy and 11 integrated boost whole-gland implants. Mean procedure time excluding dose delivery was 38 min (range: 21-83) for focal, and 56 min (range: 38-89) for whole-gland implants; stable over time. EM catheter reconstructions achieved a mean difference between computed and measured free-length of 0.8 mm (SD 0.8, no corrections performed), and mean axial manual corrections 1.3 mm (SD 0.7). EM also enabled the clinical use of a non or partially visible catheter in 21% of procedures. Registration accuracy improved with y-axis rotation for urethral alignment at initialization and with the elastic registration (mTRE 3.42 mm, SD 1.49). CONCLUSION The system supported tumor-targeting and was implemented with no demonstrable learning curve. EM reconstruction errors were small, correctable, and improved with calibration and control of external distortion sources; increasing confidence in the use of partially visible catheters. Image registration errors remained despite rotational alignment and deformation, and should be carefully considered.
Collapse
Affiliation(s)
- David Grajales
- Polytechnique Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada
| | - Samuel Kadoury
- Polytechnique Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada
| | | | - Maroie Barkati
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Canada
| | - Guila Delouya
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Canada
| | | | - Benedicte Nicolas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada
| | | | | | - Daniel Juneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Canada
| | - Jean-Francois Carrier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Canada
| | | | - Cynthia Ménard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada; Université de Montréal, Canada.
| |
Collapse
|
8
|
Zhou Z, Meshaw R, Zalutsky MR, Vaidyanathan G. Site-Specific and Residualizing Linker for 18F Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med 2021; 62:1624-1630. [PMID: 33637584 PMCID: PMC8612331 DOI: 10.2967/jnumed.120.261446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Single-domain antibody fragments (sdAbs) are promising vectors for immuno-PET; however, better methods for labeling sdAbs with 18F are needed. Herein, we evaluate a site-specific strategy using an 18F residualizing motif and the anti-epidermal growth factor receptor 2 (HER2) sdAb 5F7 bearing an engineered C-terminal GGC tail (5F7GGC). Methods: 5F7GGC was site-specifically attached with a tetrazine-bearing agent via thiol-maleimide reaction. The resultant conjugate was labeled with 18F by inverse electron demand Diels-Alder cycloaddition with a trans-cyclooctene attached to 6-18F-fluoronicotinoyl moiety via a renal brush border enzyme-cleavable linker and a PEG4 chain (18F-5F7GGC). For comparisons, 5F7 sdAb was labeled using the prototypical residualizing agent, N-succinimidyl 3-(guanidinomethyl)-5-125I-iodobenzoate (iso-125I-SGMIB). The 2 labeled sdAbs were compared in paired-label studies performed in the HER2-expressing BT474M1 breast carcinoma cell line and athymic mice bearing BT474M1 subcutaneous xenografts. Small-animal PET/CT imaging after administration of 18F-5F7GGC in the above mouse model was also performed. Results:18F-5F7GGC was synthesized in an overall radiochemical yield of 8.9% ± 3.2% with retention of HER2 binding affinity and immunoreactivity. The total cell-associated and intracellular activity for 18F-5F7GGC was similar to that for coincubated iso-125I-SGMIB-5F7. Likewise, the uptake of 18F-5F7GGC in BT474M1 xenografts in mice was similar to that for iso-125I-SGMIB-5F7; however, 18F-5F7GGC exhibited significantly more rapid clearance from the kidney. Small-animal PET/CT imaging confirmed high uptake and retention in the tumor with very little background activity at 3 h except in the bladder. Conclusion: This site-specific and residualizing 18F-labeling strategy could facilitate clinical translation of 5F7 anti-HER2 sdAb as well as other sdAbs for immuno-PET.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
9
|
Zhang X, Wu Y, Zeng Q, Xie T, Yao S, Zhang J, Cui M. Synthesis, Preclinical Evaluation, and First-in-Human PET Study of Quinoline-Containing PSMA Tracers with Decreased Renal Excretion. J Med Chem 2021; 64:4179-4195. [PMID: 33783213 DOI: 10.1021/acs.jmedchem.1c00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The prostate-specific membrane antigen (PSMA) is considered to be an excellent theranostic target of prostate cancer (PCa). In this study, three 18F-labeled PSMA tracers with a more lipophilic quinoline functional spacer were designed, synthesized, and evaluated based on the Glu-Ureido-Lys binding motif. The effect of structure-related lipophilic difference on distribution and excretion of these tracers in vitro and in vivo (cells, rodent, primate, and human) was investigated by comparing with [18F]DCFPyL. There is no significant correlation between the renal elimination and the lipophilicity of the tracers in all species. However, the higher the lipophilicity of tracer, the higher the radioactivity accumulation in the liver of primate and human, and the less radioactivity is to excrete to the bladder with urine. The screened tracer [18F]8c, with a Ki value of 4.58 nM, displayed notable low bladder retention and demonstrated good imaging properties in patients with PCa.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yitian Wu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tianxin Xie
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shulin Yao
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
10
|
Automated synthesis of [ 18F]Ga-rhPSMA-7/ -7.3: results, quality control and experience from more than 200 routine productions. EJNMMI Radiopharm Chem 2021; 6:4. [PMID: 33484364 PMCID: PMC7826325 DOI: 10.1186/s41181-021-00120-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction The radiohybrid (rh) prostate-specific membrane antigen (PSMA)-targeted ligand [18F]Ga-rhPSMA-7 has previously been clinically assessed and demonstrated promising results for PET-imaging of prostate cancer. The ligand is present as a mixture of four stereoisomers ([18F]Ga-rhPSMA-7.1, − 7.2, − 7.3 and − 7.4) and after a preclinical isomer selection process, [18F]Ga-rhPSMA-7.3 has entered formal clinical trials. Here we report on the establishment of a fully automated production process for large-scale production of [18F]Ga-rhPSMA-7/ -7.3 under GMP conditions (EudraLex). Methods [18F]Fluoride in highly enriched [18O]H2O was retained on a strong anion exchange cartridge, rinsed with anhydrous acetonitrile and subsequently eluted with a solution of [K+ ⊂ 2.2.2]OH− in anhydrous acetonitrile into a reactor containing Ga-rhPSMA ligand and oxalic acid in DMSO. 18F-for-19F isotopic exchange at the Silicon-Fluoride Acceptor (SiFA) was performed at room temperature, followed by dilution with buffer and cartridge-based purification. Optimum process parameters were determined on the laboratory scale and thereafter implemented into an automated synthesis. Data for radiochemical yield (RCY), purity and quality control were analyzed for 243 clinical productions (160 for [18F]Ga-rhPSMA-7; 83 for [18F]Ga-rhPSMA-7.3). Results The automated production of [18F]Ga-rhPSMA-7 and the single isomer [18F]Ga-rhPSMA-7.3 is completed in approx. 16 min with an average RCY of 49.2 ± 8.6% and an excellent reliability of 98.8%. Based on the different starting activities (range: 31–130 GBq, 89 ± 14 GBq) an average molar activity of 291 ± 62 GBq/μmol (range: 50–450 GBq/μmol) was reached for labeling of 150 nmol (231 μg) precursor. Radiochemical purity, as measured by radio-high performance liquid chromatography and radio-thin layer chromatography, was 99.9 ± 0.2% and 97.8 ± 1.0%, respectively. Conclusion This investigation demonstrates that 18F-for-19F isotopic exchange is well suited for the fast, efficient and reliable automated routine production of 18F-labeled PSMA-targeted ligands. Due to its simplicity, speed and robustness the development of further SiFA-based radiopharmaceuticals is highly promising and can be of far-reaching importance for future theranostic concepts. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00120-5.
Collapse
|
11
|
Hall AJ, Haskali MB. Radiolabelled Peptides: Optimal Candidates for Theranostic Application in Oncology. Aust J Chem 2021. [DOI: 10.1071/ch21118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wurzer A, Di Carlo D, Schmidt A, Beck R, Eiber M, Schwaiger M, Wester HJ. Radiohybrid Ligands: A Novel Tracer Concept Exemplified by 18F- or 68Ga-Labeled rhPSMA Inhibitors. J Nucl Med 2020; 61:735-742. [PMID: 31862804 PMCID: PMC7198388 DOI: 10.2967/jnumed.119.234922] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
When we critically assess the reason for the current dominance of 68Ga-labeled peptides and peptide-like ligands in radiopharmacy and nuclear medicine, we have to conclude that the major advantage of such radiopharmaceuticals is the apparent lack of suitable 18F-labeling technologies with proven clinical relevance. To prepare and to subsequently perform a clinical proof-of-concept study on the general suitability of silicon-fluoride-acceptor (SiFA)-conjugated radiopharmaceuticals, we developed inhibitors of the prostate-specific membrane antigen (PSMA) that are labeled by isotopic exchange (IE). To compensate for the pronounced lipophilicity of the SiFA unit, we used metal chelates, conjugated in close proximity to SiFA. Six different radiohybrid PSMA ligands (rhPSMA ligands) were evaluated and compared with the commonly used 18F-PSMA inhibitors 18F-DCFPyL and 18F-PSMA-1007. Methods: All inhibitors were synthesized by solid-phase peptide synthesis. Human serum albumin binding was measured by affinity high-performance liquid chromatography, whereas the lipophilicity of each tracer was determined by the n-octanol/buffer method. In vitro studies (IC50, internalization) were performed on LNCaP cells. Biodistribution studies were conducted on LNCaP tumor-bearing male CB-17 SCID mice. Results: On the laboratory scale (starting activities, 0.2-9.0 GBq), labeling of 18F-rhPSMA-5 to -10 by IE was completed in < 20 min (radiochemical yields, 58% ± 9%; radiochemical purity, >97%) with molar activities of 12-60 GBq/μmol. All rhPSMAs showed low nanomolar affinity and high internalization by PSMA-expressing cells when compared with the reference radiopharmaceuticals, medium-to-low lipophilicity, and high human serum albumin binding. Biodistribution studies in LNCaP tumor-bearing mice revealed high tumor uptake, sufficiently fast clearance kinetics from blood, low hepatobiliary excretion, fast renal excretion, and very low uptake of 18F activity in bone. Conclusion: The novel 18F-rhPSMA radiopharmaceuticals developed under the radiohybrid concept show equal or better targeting characteristics than the established 18F-PSMA tracers 18F-DCFPyL and 18F-PSMA-1007. The unparalleled simplicity of production, the possibility to produce the identical 68Ga-labeled 19F-68Ga-rhPSMA tracers, and the possibility to extend this concept to true theranostic radiohybrid radiopharmaceuticals, such as F-Lu-rhPSMA, are unique features of these radiopharmaceuticals.
Collapse
Affiliation(s)
- Alexander Wurzer
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany; and
| | - Daniel Di Carlo
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany; and
| | - Alexander Schmidt
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany; and
| | - Roswitha Beck
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany; and
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany; and
| |
Collapse
|