1
|
Dioury F, San C, Gnanalingam G, Henoumont C, Rousselin Y, Haouz A, Shepard W, Hosten B, Vijayakumar K, Laurent S, Port M. Bifunctional Hexadentate Pyclen-Based Chelating Agent for Mild Radiofluorination in Aqueous Solution at Room Temperature with a Ga- 18F Ternary Complex. Chemistry 2024; 30:e202403358. [PMID: 39331479 PMCID: PMC11618045 DOI: 10.1002/chem.202403358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Positron Emission Tomography (PET) is used in oncology for tumor diagnosis, commonly relying on fluorine-18 (18F) emission detection. The conventional method of 18F incorporation on to probes by covalent bonding is harsh for sensitive biomolecules, which are nonetheless compounds of choice for the development of targeted probes. This study explores gallium-18F (Ga18F) coordination, a milder alternative method occurring in aqueous media at the final stage of radiosyntheses. Pyclen-based chelating agents were proposed to capture (GaF) species at room temperature and pH≥5 making the radiofluorination process compatible with heat- and acid-sensitive biomolecules. Highly promising results were obtained with the PC2A-based chelating agent LH2 derived from the new bifunctional PC2A-OAE-NCS compound. The solid-state structure of GaF(L) was elucidated by X-ray diffraction and revealed an unconventional heptacoordination of Ga(III). A high radiochemical conversion (RCC) of 86 % was achieved at room temperature, in water at pH 5 within 20 minutes. Stability studies showed the robustness of the GaF(L) complex in aqueous media for at least one day and at least one hour for the radiolabeled analog Ga18F(L). These findings demonstrated that PC2A-based compounds are chelating agents of choice for (Ga18F) species, suggesting a real technological breakthrough for PET imaging and precision medicine.
Collapse
Affiliation(s)
- Fabienne Dioury
- Conservatoire national des arts et métiersLaboratoire Génomique, bioinformatique et chimie moléculaire (GBCM)EA 75282 rue Conté75003ParisFrance
| | - Carine San
- Conservatoire national des arts et métiersLaboratoire Génomique, bioinformatique et chimie moléculaire (GBCM)EA 75282 rue Conté75003ParisFrance
- Hôpital Saint-LouisUniversité Paris CitéInstitut de Recherche Saint-LouisUnité Claude Kellershohn1 avenue Claude Vellefaux75010ParisFrance
| | - Gayathiri Gnanalingam
- Conservatoire national des arts et métiersLaboratoire Génomique, bioinformatique et chimie moléculaire (GBCM)EA 75282 rue Conté75003ParisFrance
| | - Céline Henoumont
- Université de Mons, GeneralOrganic and Biomedical Chemistry GroupNMR and Molecular Imaging Laboratory, Mendeleev building19 avenue MaistriauB-7000MonsBelgique
| | - Yoann Rousselin
- Université de BourgogneInstitut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)UMR CNRS 63029 avenue Alain Savary21078DijonFrance
| | - Ahmed Haouz
- Institut PasteurCrystallography Platform C2RTCNRS UMR 352825-28 rue du Docteur Roux75015ParisFrance
| | - William Shepard
- Synchrotron SOLEILProxima 2A, L'Orme des MerisiersDépartementale 12891190Saint-AubinFrance
| | - Benoît Hosten
- Hôpital Saint-LouisUniversité Paris CitéInstitut de Recherche Saint-LouisUnité Claude Kellershohn1 avenue Claude Vellefaux75010ParisFrance
- Université Paris CitéINSERM UMR−S 1144Optimisation Thérapeutique en Neuropsychopharmacologie4 avenue de l'Observatoire75006ParisFrance
| | - Kamsana Vijayakumar
- Conservatoire national des arts et métiersLaboratoire Génomique, bioinformatique et chimie moléculaire (GBCM)EA 75282 rue Conté75003ParisFrance
| | - Sophie Laurent
- Université de Mons, GeneralOrganic and Biomedical Chemistry GroupNMR and Molecular Imaging Laboratory, Mendeleev building19 avenue MaistriauB-7000MonsBelgique
| | - Marc Port
- Conservatoire national des arts et métiersLaboratoire Génomique, bioinformatique et chimie moléculaire (GBCM)EA 75282 rue Conté75003ParisFrance
| |
Collapse
|
2
|
Runacres D, Greenacre VK, Dyke JM, Grigg J, Herbert G, Levason W, McRobbie G, Reid G. Synthesis, Characterization, and Computational Studies on Gallium(III) and Iron(III) Complexes with a Pentadentate Macrocyclic bis-Phosphinate Chelator and Their Investigation As Molecular Scaffolds for 18F Binding. Inorg Chem 2023; 62:20844-20857. [PMID: 38055373 PMCID: PMC10731642 DOI: 10.1021/acs.inorgchem.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
With the aim of obtaining improved molecular scaffolds for 18F binding to use in PET imaging, gallium(III) and iron(III) complexes with a macrocyclic bis-phosphinate chelator have been synthesized and their properties, including their fluoride binding ability, investigated. Reaction of Bn-tacn (1-benzyl-1,4,7-triazacyclononane) with paraformaldehyde and PhP(OR)2 (R = Me or Et) in refluxing THF, followed by acid hydrolysis, yields the macrocyclic bis(phosphinic acid) derivative, H2(Bn-NODP) (1-benzyl-4,7-phenylphosphinic acid-1,4,7-triazacyclononane), which is isolated as its protonated form, H2(Bn-NODP)·2HCl·4H2O, at low pH (HClaq), its disodium salt, Na2(Bn-NODP)·5H2O at pH 12 (NaOHaq), or the neutral H2(Bn-NODP) under mildly basic conditions (Et3N). A crystal structure of H2(Bn-NODP)·2HCl·H2O confirmed the ligand's identity. The mononuclear [GaCl(Bn-NODP)] complex was prepared by treatment of either the HCl or sodium salt with Ga(NO3)3·9H2O or GaCl3, while treatment of H2(Bn-NODP)·2HCl·4H2O with FeCl3 in aqueous HCl gives [FeCl(Bn-NODP)]. The addition of 1 mol. equiv of aqueous KF to these chloro complexes readily forms the [MF(Bn-NODP)] analogues. Spectroscopic analysis on these complexes confirms pentadentate coordination of the doubly deprotonated (bis-phosphinate) macrocycle via its N3O2 donor set, with the halide ligand completing a distorted octahedral geometry; this is further confirmed through a crystal structure analysis on [GaF(Bn-NODP)]·4H2O. The complex adopts the geometric isomer in which the phosphinate arms are coordinated unsymmetrically (isomer 1) and with the stereochemistry of the three N atoms of the tacn ring in the RRS configuration, denoted (N)RRS, and the phosphinate groups in the RR stereochemistry, denoted (P)RR, (isomer 1/RR), together with its (N)SSR (P)SS enantiomer. The greater thermodynamic stability of isomer 1/RR over the other possible isomers is also indicated by density functional theory (DFT) calculations. Radiofluorination experiments on the [MCl(Bn-NODP)] complexes in partially aqueous MeCN/NaOAcaq (Ga) or EtOH (Ga or Fe; i.e. without buffer) with 18F- target water at 80 °C/10 min lead to high radiochemical incorporation (radiochemical yields 60-80% at 1 mg/mL, or ∼1.5 μM, concentration of the precursor). While the [Fe18F(n-NODP)] is unstable (loss of 18F-) in both H2O/EtOH and PBS/EtOH (PBS = phosphate buffered saline), the [Ga18F(Bn-NODP)] radioproduct shows excellent stability, RCP = 99% at t = 4 h (RCP = radiochemical purity) when formulated in 90%:10% H2O/EtOH and ca. 95% RCP over 4 h when formulated in 90%:10% PBS/EtOH. This indicates that the new "GaIII(Bn-NODP)" moiety is a considerably superior fluoride binding scaffold than the previously reported [Ga18F(Bn-NODA)] (Bn-NODA = 1-benzyl-4,7-dicarboxylate-1,4,7-triazacyclononane), which undergoes rapid and complete hydrolysis in PBS/EtOH (refer to Chem. Eur. J. 2015, 21, 4688-4694).
Collapse
Affiliation(s)
- Danielle
E. Runacres
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Victoria K. Greenacre
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - John M. Dyke
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Julian Grigg
- GE
HealthCare, Pollards Wood, Nightingales Lane, Chalfont
St. Giles, Buckinghamshire HP8 4SP, United Kingdom
| | - George Herbert
- GE
HealthCare, Pollards Wood, Nightingales Lane, Chalfont
St. Giles, Buckinghamshire HP8 4SP, United Kingdom
| | - William Levason
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Graeme McRobbie
- GE
HealthCare, Pollards Wood, Nightingales Lane, Chalfont
St. Giles, Buckinghamshire HP8 4SP, United Kingdom
| | - Gillian Reid
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|