1
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
3
|
Shalgunov V, Xiong M, L'Estrade ET, Raval NR, Andersen IV, Edgar FG, Speth NR, Baerentzen SL, Hansen HD, Donovan LL, Nasser A, Peitersen ST, Kjaer A, Knudsen GM, Syvänen S, Palner M, Herth MM. Blocking of efflux transporters in rats improves translational validation of brain radioligands. EJNMMI Res 2020; 10:124. [PMID: 33074370 PMCID: PMC7572968 DOI: 10.1186/s13550-020-00718-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Positron emission tomography (PET) is a molecular imaging technique that can be used to investigate the in vivo pharmacology of drugs. Initial preclinical evaluation of PET tracers is often conducted in rodents due to the accessibility of disease models as well as economic considerations. Compared to larger species, rodents display a higher expression and/or activity of efflux transporters such as the P-glycoprotein (P-gp). Low brain uptake could, therefore, be species-specific and uptake in rodents not be predictive for that in humans. We hypothesized that a better prediction from rodent data could be achieved when a tracer is evaluated under P-gp inhibition. Consequently, we compared the performance of eight neuroreceptor tracers in rats with and without P-gp inhibition including a specific binding blockade. This data set was then used to predict the binding of these eight tracers in pigs. Methods PET tracers targeting serotonin 5-HT2A receptors ([18F]MH.MZ, [18F]Altanserin, [11C]Cimbi-36, [11C]Pimavanserin), serotonin 5-HT7 receptors ([11C]Cimbi-701, [11C]Cimbi-717 and [11C]BA-10) and dopamine D2/3 receptors ([18F]Fallypride) were used in the study. The brain uptake and target-specific binding of these PET radiotracers were evaluated in rats with and without inhibition of P-gp. Rat data were subsequently compared to the results obtained in pigs. Results Without P-gp inhibition, the amount of target-specific binding in the rat brain was sufficient to justify further translation for three out of eight evaluated tracers. With P-gp inhibition, results for five out of eight tracers justified further translation. The performance in pigs could correctly be predicted for six out of eight tracers when rat data obtained under P-gp inhibition were used, compared to four out of eight tracers without P-gp inhibition. Conclusions P-gp strongly affects the uptake of PET tracers in rodents, but false prediction outcomes can be reduced by evaluating a tracer under P-gp inhibition.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mengfei Xiong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Elina T L'Estrade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Nakul R Raval
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ida V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Fraser G Edgar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Nikolaj R Speth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Simone L Baerentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Lene L Donovan
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Siv T Peitersen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark. .,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|