1
|
Peters B, Dattner T, Schlieben LD, Sun T, Staufner C, Lenz D. Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency. J Inherit Metab Dis 2024. [PMID: 38279772 DOI: 10.1002/jimd.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
Collapse
Affiliation(s)
- Bianca Peters
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Tal Dattner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tian Sun
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Christian Staufner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Dominic Lenz
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Lunke S, Bouffler SE, Patel CV, Sandaradura SA, Wilson M, Pinner J, Hunter MF, Barnett CP, Wallis M, Kamien B, Tan TY, Freckmann ML, Chong B, Phelan D, Francis D, Kassahn KS, Ha T, Gao S, Arts P, Jackson MR, Scott HS, Eggers S, Rowley S, Boggs K, Rakonjac A, Brett GR, de Silva MG, Springer A, Ward M, Stallard K, Simons C, Conway T, Halman A, Van Bergen NJ, Sikora T, Semcesen LN, Stroud DA, Compton AG, Thorburn DR, Bell KM, Sadedin S, North KN, Christodoulou J, Stark Z. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat Med 2023:10.1038/s41591-023-02401-9. [PMID: 37291213 PMCID: PMC10353936 DOI: 10.1038/s41591-023-02401-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.
Collapse
Affiliation(s)
- Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
| | | | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
- Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Tasmania, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karin S Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Song Gao
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Matilda R Jackson
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stefanie Eggers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simone Rowley
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kirsten Boggs
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Ana Rakonjac
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Gemma R Brett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle G de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amanda Springer
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Kirsty Stallard
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Thomas Conway
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andreas Halman
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Nicole J Van Bergen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tim Sikora
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liana N Semcesen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kathryn N North
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - John Christodoulou
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| |
Collapse
|