1
|
Baruffaldi L, Andrade MCB. Does female control and male mating system predict courtship investment and mating outcomes? A comparative study in five widow spider species (genus Latrodectus) tested under similar laboratory conditions. BMC Ecol Evol 2024; 24:86. [PMID: 38937685 PMCID: PMC11212240 DOI: 10.1186/s12862-024-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Male courtship investment may evolve in response to the male's expectation of future mating opportunities or the degree of female control during mating interactions. We used a comparative approach to test this hypotheses by assessing the courtship and mating behaviors of five widow spider species (genus Latrodectus) under common laboratory conditions. We predicted male investment in courtship would be higher in species where males mate only once because of high cannibalism rates (monogyny, L. geometricus, L. hasselti, L. mirabilis), compared to species with rare cannibalism (L. mactans, L. hesperus) in which males should reserve energy for future mating opportunities. Increased male investment, measured as courtship duration, might also evolve with increased female control over mating outcomes if females prefer longer courtships. We tested this by assessing the frequency of copulations, timing of sexual cannibalism, and the degree of female-biased size dimorphism, which is expected to be negatively correlated with the energetic cost of rebuffing male mating attempts. RESULTS Copulation frequency was consistently lower in species with extreme female-skewed size dimorphism, and where sexual cannibalism was more prevalent, suggesting the importance of female control for mating outcomes. We confirmed significant interspecific variation in average courtship duration, but contrary to predictions, it was not predicted by male mating system, and there was no consistent link between courtship duration and sexual size dimorphism. CONCLUSION We show that the degree of sexual dimorphism is not only correlated with sexual cannibalism, but also with mating success since restriction of male copulation frequency by female Latrodectus affects paternity. However, predictions about male mating system or female control affecting courtship duration were not supported. We propose that the form of female control over mating and cannibalism, and male responses, might be more informative for understanding the evolution of courtship duration. For example, male tactics to avoid female aggression may drive lower courtship duration in species like L. mirabilis. Nonetheless, our results differ from inferences based on published studies of each species in isolation, illuminating the need for standardized data collection for behavioural comparative studies.
Collapse
Affiliation(s)
- Luciana Baruffaldi
- Departments of Biological Sciences and Ecology & Evolutionary Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada.
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Maydianne C B Andrade
- Departments of Biological Sciences and Ecology & Evolutionary Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
2
|
Dharmarathne WDSC, Herberstein ME. Limitations of sperm transfer in the complex reproductive system of spiders. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In spiders, sperm transfer from the male to the female is indirect via secondary copulatory structures, the pedipalps. At the time of transfer the sperm are not mobile and the ejaculate needs to move through narrow male and female ducts to the female sperm storage organ. In addition, copulation duration can be very short, often limited to just a few seconds. Finally, sexual cannibalism and genital damage limits male life-time mating opportunities. These features of the reproductive biology in spiders are likely to result in sperm transfer constraints. Here we review the intrinsic and extrinsic sperm transfer limitations and conduct a meta-analysis on sperm transfer data from published data. Most of the information available relates to orb-web spiders, but our meta-analysis also includes non-orb-web spiders. Our review identifies some of the behavioural factors that have been shown to influence sperm transfer, and lists several morphological and physiological traits where we do not yet know how they might affect sperm transfer.
Collapse
|
3
|
Juvenile Experience with Male Cues Triggers Cryptic Choice Mechanisms in Adult Female Redback Spiders. INSECTS 2021; 12:insects12090825. [PMID: 34564265 PMCID: PMC8468702 DOI: 10.3390/insects12090825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Females of many species vary in their receptivity to male mating attempts. When many males are present in the habitat, the theory predicts that females should be choosy and discriminate among potential mates. When few males are available, females should mate readily with the first male who courts, and thus avoid the risk of remaining unmated. We predicted that cues perceived as juveniles that indicate male availability would affect the mating behaviour of adult females. In our first experiment, juvenile females were exposed to airborne chemicals produced by males at high or low densities. In our second experiment, we mimicked a natural situation where males or other juveniles live on the webs of females shortly before they become sexually mature, and compared this to females developing in isolation. As was consistent with our predictions, we found that the adult females changed their behaviour after exposure to cues of high male availability during development. When the females perceived many males nearby (high density airborne cues or living with males) they more often interrupted copulation, or cannibalized the males before the mating was complete as adults. In comparison, when the cues indicated low male availability, the adult females were more likely to allow the males to complete mating, and cannibalism was less common. Abstract Female choice may be linked to population density if the expected encounter rates with potential mates affects choosiness (the energy and risk engaged to express mate preferences). Choosiness should covary with male availability, which could be assessed using the social cues available during development. We tested whether the exposure of juvenile females to cues of male density affected the mechanisms of choosiness of adult Latrodectus hasselti spiders in two experiments simulating natural contexts. The juvenile females were exposed to (1) volatile chemicals from two densities of adult males (airborne cues), and (2) tactile, vibrational and chemical cues from adult males or other females (cohabitation cues). As adults, the females mated readily, regardless of the treatment, but there was strong evidence for post-copulatory mechanisms of choosiness in females exposed to cues of high male availability. These included abbreviated matings (in both experiments), cannibalism of the males before the mating was complete (cohabitation), and, remarkably, a reduction in the successful placement of internal sperm plugs (cohabitation). These shifts decrease the likelihood that the first mate would monopolize paternity if the female chose to mate again. We conclude that female choosiness may impose a strong selection on males despite the high mating rates, and these effects can hinge on the cues of male availability detected by juveniles.
Collapse
|
4
|
Sentenská L, Neumann A, Lubin Y, Uhl G. Functional morphology of immature mating in a widow spider. Front Zool 2021; 18:19. [PMID: 33902650 PMCID: PMC8074507 DOI: 10.1186/s12983-021-00404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mating generally occurs after individuals reach adulthood. In many arthropods including spiders, the adult stage is marked by a final moult after which the genitalia are fully developed and functional. In several widow spider species (genus Latrodectus), however, immature females may mate a few days before they moult to adulthood, i.e. in their late-subadult stage. While the “adult” mating typically results in cannibalism, males survive the “immature” mating. During both “immature” and “adult” matings, males leave parts of their paired copulatory organs within female genitalia, which may act as mating plugs. To study potential costs and benefits of the two mating tactics, we investigated female genital morphology of the brown widow spider, L. geometricus. Light microscopy, histology and micro-computed tomography of early-subadult, late-subadult and adult females were conducted to determine the overall pattern of genital maturation. We compared genitalia of mated late-subadult and adult females to reveal potential differences in the genitalic details that might indicate differential success in sperm transfer and different environments for sperm storage and sperm competition. Results We found that the paired sperm storage organs (spermathecae) and copulatory ducts are developed already in late-subadult females and host sperm after immature mating. However, the thickness of the spermathecal cuticle and the staining of the secretions inside differ significantly between the late-subadult and adult females. In late-subadult females mating plugs were found with higher probability in both spermathecae compared to adult females. Conclusions Sperm transfer in matings with late-subadult females follows the same route as in matings with adult females. The observed differences in the secretions inside the spermathecae of adult and late-subadult females likely reflect different storage conditions for the transferred sperm which may lead to a disadvantage under sperm competition if the subadult female later re-mates with another male. However, since males mating with late-subadult females typically transfer sperm to both spermathecae they might benefit from numerical sperm competition as well as from monopolizing access to the female sperm storage organs. The assessment of re-mating probability and relative paternity will clarify the costs and benefits of the two mating tactics in light of these findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00404-1.
Collapse
Affiliation(s)
- Lenka Sentenská
- Department of General and Systematic Zoology, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany. .,Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada.
| | - Aileen Neumann
- Department of General and Systematic Zoology, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| | - Yael Lubin
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Gabriele Uhl
- Department of General and Systematic Zoology, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| |
Collapse
|
5
|
Zhan Y, Jiang H, Wu Q, Zhang H, Bai Z, Kuntner M, Tu L. Comparative morphology refines the conventional model of spider reproduction. PLoS One 2019; 14:e0218486. [PMID: 31276510 PMCID: PMC6611574 DOI: 10.1371/journal.pone.0218486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/03/2019] [Indexed: 11/19/2022] Open
Abstract
Our understanding of spider reproductive biology is hampered by the vast anatomical diversity and difficulties associated with its study. Although authors agree on the two general types of female spider genitalia, haplogyne (plesiomorphic) and entelegyne (apomorphic), our understanding of variation within each group mostly concerns the external genital part, while the internal connections with the reproductive duct are largely unknown. Conventionally and simplistically, the spermathecae of haplogynes have simple two-way ducts, and those of entelegynes have separate copulatory and fertilization ducts for sperm to be transferred in and out of spermathecae, respectively. Sperm is discharged from the spermathecae directly into the uterus externus (a distal extension of the oviduct), which, commonly thought as homologous in both groups, is the purported location of internal fertilization in spiders. However, the structural evolution from haplo- to entelegyny remains unresolved, and thus the precise fertilization site in entelegynes is ambiguous. We aim to clarify this anatomical problem through a widely comparative morphological study of internal female genital system in entelegynes. Our survey of 147 epigyna (121 examined species in 97 genera, 34 families) surprisingly finds no direct connection between the fertilization ducts and the uterus externus, which, based on the homology with basal-most spider lineages, is a dead-end caecum in entelegynes. Instead, fertilization ducts usually connect with a secondary uterus externus, a novel feature taking over the functional role of the plesiomorphic uterus externus. We hypothesize that the transition from haplo- to entelegyny entailed not only the emergence of the two separate duct systems (copulatory, fertilization), but also involved substantial morphological changes in the distal part of the oviduct. Thus, the common oviduct may have shifted its distal connection from the uterus externus to the secondary uterus externus, perhaps facilitating discharge of larger eggs. Our findings suggest that the conventional model of entelegyne reproduction needs redefinition.
Collapse
Affiliation(s)
- Yongjia Zhan
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - He Jiang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Qingqing Wu
- Lang Yue Campus of Beijing 12th High School, Beijing, P. R. China
| | - Huitao Zhang
- Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, P. R. China
| | - Zishang Bai
- College of Life Sciences, China Agricultural University, Beijing, P. R. China
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Ljubljana, Slovenia
| | - Lihong Tu
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
6
|
Makover V, Ronen Z, Lubin Y, Khalaila I. Eggshell spheres protect brown widow spider ( Latrodectus geometricus) eggs from bacterial infection. J R Soc Interface 2019; 16:20180581. [PMID: 30958158 DOI: 10.1098/rsif.2018.0581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Eggs provide a rich source of nutrients for the developing embryo, making them a favoured food source for other organisms as well. Several defence mechanisms have evolved to protect the developing embryos against microbial threats. In this article, we elucidate the defence strategy of brown widow spider ( Latrodectus geometricus) eggs against bacteria. Antibacterial activity was shown by inhibition of bacterial growth on agar plate, liquid culture and retarded biofilm formation. The defence strategy against bacterial invasion was demonstrated in the whole egg, whole egg extract, egg surface extract, eggshell and eggshell extract. The source and characteristics of this antibacterial activity are distinctive and stem in part from a dense layer of spheres covering the egg surface, likely originated from the oviposition fluid. The spheres are rich in low-molecular-weight proteins, yet their exact composition remains unknown. In this study, we demonstrate that the egg surface is hydrophobic, while the spheres are superhydrophilic. Egg surface roughness and hydrophobicity combined with its antibacterial chemical properties reduce the ability of bacteria to grow on the egg surface. Understanding the properties of these unique structures may contribute significantly to our knowledge of how nature deals with bacterial infections.
Collapse
Affiliation(s)
- Vardit Makover
- 1 Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University , Midreshet Ben-Gurion , Israel
| | - Zeev Ronen
- 1 Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University , Midreshet Ben-Gurion , Israel
| | - Yael Lubin
- 2 Marco and Louise Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University , Midreshet Ben-Gurion , Israel
| | - Isam Khalaila
- 3 Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University , Beer Sheva , Israel
| |
Collapse
|
7
|
Andrade MC. Sexual selection and social context: Web-building spiders as emerging models for adaptive plasticity. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Michalik P, Ramírez MJ. Evolutionary morphology of the male reproductive system, spermatozoa and seminal fluid of spiders (Araneae, Arachnida)--current knowledge and future directions. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:291-322. [PMID: 24907603 DOI: 10.1016/j.asd.2014.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The male reproductive system and spermatozoa of spiders are known for their high structural diversity. Spider spermatozoa are flagellate and males transfer them to females in a coiled and encapsulated state using their modified pedipalps. Here, we provide a detailed overview of the present state of knowledge of the primary male reproductive system, sperm morphology and the structural diversity of seminal fluids with a focus on functional and evolutionary implications. Secondly, we conceptualized characters for the male genital system, spermiogenesis and spermatozoa for the first time based on published and new data. In total, we scored 40 characters for 129 species from 56 families representing all main spider clades. We obtained synapomorphies for several taxa including Opisthothelae, Araneomorphae, Dysderoidea, Scytodoidea, Telemidae, Linyphioidea, Mimetidae, Synotaxidae and the Divided Cribellum Clade. Furthermore, we recovered synspermia as a synapomorphy for ecribellate Haplogynae and thus propose Synspermiata as new name for this clade. We hope that these data will not only contribute to future phylogenetic studies but will also stimulate much needed evolutionary studies of reproductive systems in spiders.
Collapse
Affiliation(s)
- Peter Michalik
- Allgemeine und Systematische Zoologie, Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, J.-S.-Bach-Straße 11/12, D-17489 Greifswald, Germany.
| | - Martín J Ramírez
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" - CONICET, Av. Angel Gallardo 470, 1405 Buenos Aires, Argentina
| |
Collapse
|
9
|
Cabra-García J, Hormiga G, Brescovit AD. Female genital morphology in the secondarily haplogyne spider genus Glenognatha Simon, 1887 (Araneae, Tetragnathidae), with comments on its phylogenetic significance. J Morphol 2014; 275:1027-40. [PMID: 24788235 DOI: 10.1002/jmor.20280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022]
Abstract
Female genital morphology of secondarily haplogyne spiders has been poorly studied, hampering the analysis of its possible phylogenetic significance. We conduct a comparative morphological study of 12 species of the secondarily haplogyne spider genus Glenognatha Simon, 1887 using scanning electron microscopy. Representatives of the closely related genera Pachygnatha Sundevall, 1823 and Dyschiriognatha Simon, 1893 were also examined. The female genitalia of Glenognatha, Dyschiriognatha, and Pachygnatha species examined are composed of a spiracle-shape gonopore, a membranous chamber, a pair of copulatory ducts (CD) leading to spermathecae and a large uterus externus (UE). The most significant variation among Glenognatha species, previously unregistered within Araneoidea, is related with the absence or presence of CD and spermathecae. In addition, several characters as the form and distribution of long stem gland ductules and compartmentalization of the UE may be important for phylogenetic inference at species and generic level. Our results corroborate the close relationship between Dyshiriognatha and Glenognatha. A table with potentially informative female genitalic characters for phylogenetic inference within Glenognatha is provided. Understanding the general structure of the female genitalia in secondarily haplogyne taxa is a crucial step in order to propose characters for phylogenetic inference and to understand its possible functional significance.
Collapse
Affiliation(s)
- Jimmy Cabra-García
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil; Laboratório Especial de Coleções Zoológicas, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | | | | |
Collapse
|
10
|
Modanu M, Michalik P, Andrade MCB. Mating system does not predict permanent sperm depletion in black widow spiders. Evol Dev 2013; 15:205-12. [PMID: 23607304 DOI: 10.1111/ede.12034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Variation in sperm production is strongly influenced by mating system across taxa. Recent work in spiders suggests that males of some species show termination of spermatogenesis before their adult molt and thus an inability to produce sperm after maturation. This permanent sperm depletion (PSD) has been hypothesized to co-occur with monogyny, genital mutilation, or sexual cannibalism because the maintenance of continual sperm supplies is not necessary for species where males can expect only one mating opportunity. Here we test this hypothesis in two congeners exhibiting genital mutilation: the sexually cannibalistic, monogynous Australian redback spider Latrodectus hasselti and the polygynous Western black widow Latrodectus hesperus. We report that PSD does not occur in adult males of either species, and show that males transfer sperm into their copulatory organs multiple times as adults. These data suggest evolutionary links between mating system and investment in sperm production may be more complex than currently appreciated.
Collapse
Affiliation(s)
- Maria Modanu
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
11
|
Vöcking O, Uhl G, Michalik P. Sperm dynamics in spiders (Araneae): ultrastructural analysis of the sperm activation process in the garden spider Argiope bruennichi (Scopoli, 1772). PLoS One 2013; 8:e72660. [PMID: 24039790 PMCID: PMC3765205 DOI: 10.1371/journal.pone.0072660] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Storage of sperm inside the female genital tract is an integral phase of reproduction in many animal species. The sperm storage site constitutes the arena for sperm activation, sperm competition and female sperm choice. Consequently, to understand animal mating systems information on the processes that occur from sperm transfer to fertilization is required. Here, we focus on sperm activation in spiders. Male spiders produce sperm whose cell components are coiled within the sperm cell and that are surrounded by a proteinaceous sheath. These inactive and encapsulated sperm are transferred to the female spermathecae where they are stored for later fertilization. We analyzed the ultrastructural changes of sperm cells during residency time in the female genital system of the orb-web spider Argiope bruennichi. We found three clearly distinguishable sperm conditions: encapsulated sperm (secretion sheath present), decapsulated (secretion sheath absent) and uncoiled sperm (cell components uncoiled, presumably activated). After insemination, sperm remain in the encapsulated condition for several days and become decapsulated after variable periods of time. A variable portion of the decapsulated sperm transforms rapidly to the uncoiled condition resulting in a simultaneous occurrence of decapsulated and uncoiled sperm. After oviposition, only decapsulated and uncoiled sperm are left in the spermathecae, strongly suggesting that the activation process is not reversible. Furthermore, we found four different types of secretion in the spermathecae which might play a role in the decapsulation and activation process.
Collapse
Affiliation(s)
- Oliver Vöcking
- University of Greifswald, Zoological Institute and Museum, Department of General and Systematic Zoology, Greifswald, Germany
| | - Gabriele Uhl
- University of Greifswald, Zoological Institute and Museum, Department of General and Systematic Zoology, Greifswald, Germany
- * E-mail: (GU); (PM)
| | - Peter Michalik
- University of Greifswald, Zoological Institute and Museum, Department of General and Systematic Zoology, Greifswald, Germany
- * E-mail: (GU); (PM)
| |
Collapse
|
12
|
Burger M. Genital morphology of female goblin spiders (Arachnida: Araneae: Oonopidae) with functional implications. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00553.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Burger M. Functional morphology of female goblin spider genitalia (Arachnida: Araneae: Oonopidae) with notes on fertilization in spiders. ZOOL ANZ 2011. [DOI: 10.1016/j.jcz.2010.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Burger M. Goblin spiders without distinct receptacula seminis (Arachnida: Araneae: Oonopidae). J Morphol 2010; 271:1110-8. [PMID: 20730923 DOI: 10.1002/jmor.10857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthias Burger
- American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
15
|
Female genital morphology and mating behavior of Orchestina (Arachnida: Araneae: Oonopidae). ZOOLOGY 2010; 113:100-9. [DOI: 10.1016/j.zool.2009.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 11/21/2022]
|
16
|
Schneider JM, Lesmono K. Courtship raises male fertilization success through post-mating sexual selection in a spider. Proc Biol Sci 2009; 276:3105-11. [PMID: 19515667 PMCID: PMC2817132 DOI: 10.1098/rspb.2009.0694] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/14/2009] [Indexed: 11/12/2022] Open
Abstract
Courtship is well known for its positive effects on mating success. However, in polyandrous species, sexual selection continues to operate after copulation. Cryptic female choice is expected under unpredictable mating rates in combination with sequential mate encounters. However, there are very few accounts of the effects of courtship on cryptic female choice, and the available evidence is often correlative. Mature Argiope bruennichi females are always receptive and never attack or reject males before mating, although sexual cannibalism after mating occurs regularly. Still, males usually perform an energetic vibratory display prior to copulation. We tested the hypothesis that beneficial effects of courtship arise cryptically, during or after mating, resulting in increased paternity success under polyandry. Manipulating courtship duration experimentally, we found that males that mated without display had a reduced paternity share even though no differences in post-copulatory cannibalism or copulation duration were detected. This suggests that the paternity advantage associated with courtship arose through female-mediated processes after intromission, meeting the definition of cryptic female choice.
Collapse
Affiliation(s)
- Jutta M Schneider
- Zoological Institute and Museum, Biozentrum Grindel, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | | |
Collapse
|
17
|
Uhl G, Nessler SH, Schneider JM. Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica 2009; 138:75-104. [PMID: 19705286 DOI: 10.1007/s10709-009-9388-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
|
18
|
Tu L, Hormiga G. The female genitalic morphology of "micronetine" spiders (Araneae, Linyphiidae). Genetica 2009; 138:59-73. [PMID: 19449163 DOI: 10.1007/s10709-009-9368-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
Current knowledge of "micronetine" female genitalia is almost exclusively based on transmitted light microscopy data. As such, our understanding of the epigynal anatomy is incomplete and somewhat misleading, to the extent that it hinders comparative studies of linyphiid diversity. We used scanning electronic microscopy (SEM) to study the complex epigynal morphology of "micronetine" spiders. Enzymatic digestion of soft tissues allowed us to examine the internal chitinized structures in detail using SEM. A taxonomic sample of nine species was selected to represent the morphological genitalic diversity of female "micronetines" (including one member of the Erigoninae clade). Results reveal that the epigynum consists of a pair of grooves formed by integument folds (copulatory and fertilization grooves). The protruding epigynal region is divided into a ventral and a dorsal plate by the grooves; both plates can be modified to form an epigynal cavity and/or a scape. Our observations confirm the widespread occurrence of epigynal grooves, rather than ducts, in "micronetines". Epigynal grooves seem to be common in linyphioids and other spider groups.
Collapse
Affiliation(s)
- Lihong Tu
- College of Life Sciences, Capital Normal University, 100037 Beijing, People's Republic of China.
| | | |
Collapse
|
19
|
Burger M. Functional genital morphology of armored spiders (Arachnida: Araneae: Tetrablemmidae). J Morphol 2008; 269:1073-94. [PMID: 18563703 DOI: 10.1002/jmor.10640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study describes the female genitalia of the tetrablemmid spiders Brignoliella acuminata, Monoblemma muchmorei, Caraimatta sbordonii, Tetrablemma magister, and Ablemma unicornis by means of serial semi-thin sections and scanning electron microscopy and compares the results with previous findings on Indicoblemma lannaianum. Furthermore, the male palps and chelicerae are briefly described. The general vulval organization of females is complex and shows similarities in all of the investigated species. The copulatory orifice is situated near the posterior margin of the pulmonary plate. The opening of the uterus externus lies between the pulmonary and the postgenital plate. Paired copulatory ducts lead to sac-like receptacula. Except for A. unicornis, the male emboli of all investigated species are elongated and thread-like. However, they are too short to reach the receptacula. Hence, the spermatozoa have to be deposited inside the copulatory ducts. The same situation was also found in I. lannaianum. Females of this species store sperm encapsulated in secretory balls in their receptacula. The secretion is produced by glands adjoining the receptacula. The presence of paired fertilization ducts and spermatozoa in the uterus internus suggested that fertilization takes place internally in I. lannaianum. Secretory balls in the receptacula are found in all of the investigated species in this study, showing that sperm are stored in the same way. The place of fertilization may also be identical since dark particles, presumably spermatozoa, are located in the uterus internus of all investigated species except for T. magister. However, fertilization ducts are only found in B. acuminata and M. muchmorei. A sclerotized central process with attached muscles is present in A. unicornis, M. muchmorei, C. sbordonii and T. magister. Only in A. unicornis does the central process show an internal lumen and hold spermatozoa. In the other species, it could be used to lock the uterus during copulation in order to prevent sperm from getting into it as suggested for certain oonopid species. The uterus externus of all investigated species shows a sclerotized dorsal fold with attached muscles, previously described as "inner vulval plate." Contractions of the muscles lead to a widening of the dorsal fold, thus creating enough space for the large oocytes to pass the narrow uterus externus. The males of all investigated species have apophyses on their chelicerae. At least in B. acuminata and A. unicornis, where females have paired grooves on the preanal plate, these apophyses allow males to grasp the female during copulation as described for I. lannaianum.
Collapse
Affiliation(s)
- Matthias Burger
- American Museum of Natural History, Division of Invertebrate Zoology, Central Park West, New York 10024, USA.
| |
Collapse
|
20
|
Genital morphology of the haplogyne spider Harpactea lepida (Arachnida, Araneae, Dysderidae). ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0029-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Snow LSE, Abdel-Mesih A, Andrade MCB. Broken Copulatory Organs are Low-Cost Adaptations to Sperm Competition in Redback Spiders. Ethology 2006. [DOI: 10.1111/j.1439-0310.2006.01163.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Burger M, Michalik P, Graber W, Jacob A, Nentwig W, Kropf C. Complex genital system of a haplogyne spider (Arachnida, Araneae, Tetrablemmidae) indicates internal fertilization and full female control over transferred sperm. J Morphol 2006; 267:166-86. [PMID: 16276493 DOI: 10.1002/jmor.10394] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.
Collapse
Affiliation(s)
- Matthias Burger
- Natural History Museum, Department of Invertebrates, CH-3005 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
23
|
Burger M, Graber W, Michalik P, Kropf C. Silhouettella loricatula (Arachnida, Araneae, Oonopidae): A Haplogyne spider with complex female genitalia. J Morphol 2006; 267:663-77. [PMID: 16502412 DOI: 10.1002/jmor.10435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The female genital system of the oonopid Silhouettella loricatula is astonishingly complex. The genital opening is situated medially and leads into an oval receptaculum that is heavily sclerotized except for the ventral half of the posterior wall that appears chitinized only. A large striking sclerite lying in the posterior wall of the uterus externus is attached anteriorly to the receptaculum and continues dorsally into a globular appendix that bears a furrow. The uterus externus shows a peculiar modification in its anterior wall: a paddle-like sclerite with a nail-like posterior process. This sclerite lies opposite to the furrow proceeding in the globular appendix and may serve females to lock the uterus externus by muscle contractions. Massive muscles connect the sclerite with the anterior scutum of the opisthosoma and with two other sclerites that are attached to the receptaculum and serve as attachments for further muscles. Gland cells extend around a pore field of the receptaculum. They produce secretion that encloses spermatozoa in a discrete package (secretory sac) inside the receptaculum. In this way, the mixing of sperm from different males and thus sperm competition may be severely limited or completely prevented. During a copulation in the laboratory the ejection of a secretory sac that most probably contained spermatozoa was observed, indicating sperm dumping in S. loricatula. The ejection of the secretory sac may be caused by female muscle contractions or by male pedipalp movements. The majority of the investigated females have microorganisms in the receptacula that could represent symbionts or infectious agents. The microorganisms can be identified partly as bacteria. They are enclosed in secretion and are always found in the same position inside the receptaculum.
Collapse
Affiliation(s)
- Matthias Burger
- Natural History Museum, Department of Invertebrates, CH-3005 Bern, Switzerland.
| | | | | | | |
Collapse
|
24
|
Michalik P, Uhl G. The male genital system of the cellar spider Pholcus phalangioides (Fuesslin, 1775) (Pholcidae, Araneae): development of spermatozoa and seminal secretion. Front Zool 2005; 2:12. [PMID: 15987506 PMCID: PMC1182384 DOI: 10.1186/1742-9994-2-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 06/29/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most arthropods pass through several molting stages (instars) before reaching sexual maturity. In spiders, very little is known about the male genital system, its development and seminal secretions. For example, it is unknown whether spermatozoa exist prior to-, or only after the final molt. Likewise, it is unclear whether sperm are produced throughout male adulthood or only once in a lifetime, as is whether seminal secretions contain factors capable of manipulating female behavior. In order to shed light on these aspects of the reproductive biology of spiders, we investigated the male genital system of the common cellar spider Pholcus phalangioides, with special emphasis on its development and seminal secretions. RESULTS Testes already display all stages of spermatogenesis in subadult males (about four weeks before the final molt). Their vasa deferentia possess proximally a very voluminous lumen containing dense seminal fluid and few spermatozoa, whereas the distal part is seemingly devoid of contents. Spermatoza of P. phalangioides are typical cleistospermia with individual secretion sheaths. In male stages approximately two weeks prior to the final molt, the lumina of the testes are wider and filled with a dense secretion. The wide, proximal portion of the vasa deferentia is filled with secretion and a large number of spermatozoa, and the narrow distal part also contains secretion. In adult males, the wide lumina of the testes are packed with spermatozoa and secretions. The latter are produced by the somatic cells that bear microvilli and contain many vesicles. The lumina of the vasa deferentia are narrow and filled with spermatozoa and secretions. We could identify a dense matrix of secretion consisting of mucosubstances and at least three types of secretion droplets, likely consisting of proteinaceous substances. CONCLUSION This study reveals that spermatogenesis begins weeks before maturity and takes place continuously in the long-lived males of P. phalangioides. Possible functions of the various types of secretion in the seminal fluid and previously investigated female secretions are discussed in the light of sexual selection.
Collapse
Affiliation(s)
- Peter Michalik
- Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, J.-S.-Bach-Straße 11/12, D-17489 Greifswald, Germany
| | - Gabriele Uhl
- Institut für Zoologie, Universität Bonn, Endenicher Allee 11-13, D-53115 Bonn, Germany
| |
Collapse
|
25
|
Abstract
The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morphological and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. Male mating costs are increasingly being documented in spiders, and sexual selection by male mate choice is discussed as a potential result. Research on sexual selection in spiders has come a long way since Darwin, whose spider examples are reanalysed in the context of contemporary knowledge, but the same biases and methodological constraints have persisted almost unchanged through the current boom of research.
Collapse
Affiliation(s)
- Bernhard A Huber
- Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany.
| |
Collapse
|
26
|
Michalik P, Reiher W, Tintelnot-Suhm M, Coyle FA, Alberti G. Female genital system of the folding-trapdoor spiderAntrodiaetus unicolor (Hentz, 1842) (Antrodiaetidae, Araneae): Ultrastructural study of form and function with notes on reproductive biology of spiders. J Morphol 2005; 263:284-309. [PMID: 15672391 DOI: 10.1002/jmor.10309] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.
Collapse
Affiliation(s)
- Peter Michalik
- Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, D-17489 Greifswald, Germany.
| | | | | | | | | |
Collapse
|