1
|
Figueirido B, Tucker S, Lautenschlager S. Comparing cranial biomechanics between Barbourofelis fricki and Smilodon fatalis: Is there a universal killing-bite among saber-toothed predators? Anat Rec (Hoboken) 2024. [PMID: 38613218 DOI: 10.1002/ar.25451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Saber-tooths, extinct apex predators with long and blade-like upper canines, have appeared iteratively at least five times in the evolutionary history of vertebrates. Although saber-tooths exhibit a relatively diverse range of morphologies, it is widely accepted that all killed their prey using the same predatory behavior. In this study, we CT-scanned the skull of Barbourofelis fricki and compared its cranial mechanics using finite element analysis (FEA) with that of Smilodon fatalis. Our aim was to investigate potential variations in killing behavior between two dirk-toothed sabretooths from the Miocene and Pleistocene of North America. The study revealed that B. fricki had a stoutly-built skull capable of withstanding stress in various prey-killing scenarios, while the skull of S. fatalis appeared less optimized for supporting stress, which highlights the highly derived saber-tooth morphology of the former. The results may indicate that B. fricki was more of a generalist in prey-killing compared to S. fatalis, which experiences lower stresses under stabbing loads. We hypothesize that morphological specialization in saber-tooths does not necessarily indicate ecological specialization. Our results support the notion that morphological convergence among saber-toothed cats may obscure differences in hunting strategies employed to dispatch their prey. Our findings challenge the assumption of the universally assumed canine-shear biting as the prey-killing behavior of all saber-toothed cats. However, further research involving a wider range of dirk and scimitar-toothed forms could provide additional insights into the diversity of cranial biomechanics within this fascinating group of extinct mammalian predators.
Collapse
Affiliation(s)
- Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Shane Tucker
- Department of Earth and Planetary Sciences, University of Nebraska State Museum, Lincoln, Nebraska, USA
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- The Lapworth Museum of Geology, Birmingham, UK
| |
Collapse
|
2
|
Kemp AD. Effect of binocular visual cue availability on fruit and insect grasping performance in two cheirogaleids: Implications for primate origins hypotheses. J Hum Evol 2024; 188:103456. [PMID: 38325119 DOI: 10.1016/j.jhevol.2023.103456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 02/09/2024]
Abstract
Forward-facing eyes with parallel optic axes, which provide a wide field of binocular vision and precise depth perception, are among the diagnostic features of crown primates; however, the adaptive significance of this feature remains contentious. Two of the most prominent primate-origins hypotheses propose that either foraging for fruit or nocturnal predation on insects created selective pressures that led to the evolution of diagnostic primate traits, including a wide binocular field. To determine whether either of these hypotheses provides a viable explanation for the evolution of primates' derived eye orientation, the importance of binocular depth cues for the two tasks invoked by these hypotheses was evaluated experimentally in Microcebus murinus and Cheirogaleus medius, cheirogaleids' considered reasonable living analogs of the earliest euprimates. Performance in grasping insects and fruit was evaluated when the animals made use of their full binocular visual field and when their binocular visual field was restricted using a helmet-mounted blinder. Restriction of the binocular field had no effect on fruit grasping performance; however, restriction of the binocular field resulted in a significant deficit in insect predation performance. Differences in behavioral variables also suggest that insect predation is a more visually demanding task than fruit foraging. These results support the role of insect predation, but not fruit foraging, in contributing to the selective pressures that led to the evolution of parallel optic axes and a wide binocular field in crown primates.
Collapse
Affiliation(s)
- Addison D Kemp
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, 403 Bishop Memorial Teaching Building, 133 San Pablo St, Los Angeles, CA, 90033-9112, USA.
| |
Collapse
|
3
|
Becerra F, Vassallo AI. Shape analysis of the preorbital bar in caviomorph rodents. J Morphol 2023; 284:e21646. [PMID: 37856281 DOI: 10.1002/jmor.21646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
The highly specialised masticatory apparatus of rodents raises interesting questions about how their skull withstands the intensive and sustained forces produced by biting on hard items. In these mammals, major systematics were explored for a long time based on the adductor muscles' architecture and the related bony structures. The infraorbital foramen stands out, where a hypertrophied head of the zygomaticomandibular muscle passes through-in hystricomorphous rodents-as a direct consequence of the lateral and posterior shift of the preorbital bar. Interestingly, this bar moved laterally and backwards-enlarging the foramen-but it never disappeared throughout evolution, even showing morphological convergence among rodents. Previous research proposed this bar as behaving mechanically similar to the postorbital bar in ungulates, i.e., a safety structure against torsion stress while chewing. We analysed its morphology by mathematically modelling it under bending and torsion scenarios (linearly and elliptically shaped, respectively), and as for biting load propagation (catenary curve). Although the preorbital bar primarily seems to be shaped for withstanding torsional stress (as the postorbital bar in ungulates) and as an escaping point for force propagation, these forces are not a consequence of chewing and grinding foods, but preventing the zygomatic arch from failing when the powerful laterally-displaced jaw adductor muscles are pulling the dentary upwards at biting.
Collapse
Affiliation(s)
- Federico Becerra
- Laboratorio de Morfología Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Aldo I Vassallo
- Laboratorio de Morfología Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| |
Collapse
|
4
|
Norton LA, Abdala F, Benoit J. Craniodental anatomy in Permian-Jurassic Cynodontia and Mammaliaformes (Synapsida, Therapsida) as a gateway to defining mammalian soft tissue and behavioural traits. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220084. [PMID: 37183903 PMCID: PMC10184251 DOI: 10.1098/rstb.2022.0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals are diagnosed by more than 30 osteological characters (e.g. squamosal-dentary jaw joint, three inner ear ossicles, etc.) that are readily preserved in the fossil record. However, it is the suite of physiological, soft tissue and behavioural characters (e.g. endothermy, hair, lactation, isocortex and parental care), the evolutionary origins of which have eluded scholars for decades, that most prominently distinguishes living mammals from other amniotes. Here, we review recent works that illustrate how evolutionary changes concentrated in the cranial and dental morphology of mammalian ancestors, the Permian-Jurassic Cynodontia and Mammaliaformes, can potentially be used to document the origin of some of the most crucial defining features of mammals. We discuss how these soft tissue and behavioural traits are highly integrated, and how their evolution is intermingled with that of craniodental traits, thus enabling the tracing of their previously out-of-reach phylogenetic history. Most of these osteological and dental proxies, such as the maxillary canal, bony labyrinth and dental replacement only recently became more easily accessible-thanks, in large part, to the widespread use of X-ray microtomography scanning in palaeontology-because they are linked to internal cranial characters. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Luke A Norton
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Fernando Abdala
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, Miguel Lillo 251, Tucumán 4000, Argentina
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
5
|
Gaillard C, MacPhee RDE, Forasiepi AM. Seeing through the eyes of the sabertooth Thylacosmilus atrox (Metatheria, Sparassodonta). Commun Biol 2023; 6:257. [PMID: 36944801 PMCID: PMC10030895 DOI: 10.1038/s42003-023-04624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The evolution of mammalian vision is difficult to study because the actual receptor organs-the eyes-are not preserved in the fossil record. Orbital orientation and size are the traditional proxies for inferring aspects of ocular function, such as stereoscopy. Adaptations for good stereopsis have evolved in living predaceous mammals, and it is reasonable to infer that fossil representatives would follow the same pattern. This applies to the sparassodonts, an extinct group of South American hypercarnivores related to marsupials, with one exception. In the sabertooth Thylacosmilus atrox, the bony orbits were notably divergent, like those of a cow or a horse, and thus radically differing from conditions in any other known mammalian predator. Orbital convergence alone, however, does not determine presence of stereopsis; frontation and verticality of the orbits also play a role. We show that the orbits of Thylacosmilus were frontated and verticalized in a way that favored some degree of stereopsis and compensated for limited convergence in orbital orientation. The forcing function behind these morphological tradeoffs was the extraordinary growth of its rootless canines, which affected skull shape in Thylacosmilus in numerous ways, including relative orbital displacement.
Collapse
Affiliation(s)
- Charlène Gaillard
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.
| | - Ross D E MacPhee
- Department of Mammalogy, American Museum of Natural History, 200 Central Park West, 10024-5102, New York, NY, USA
| | - Analía M Forasiepi
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina
| |
Collapse
|
6
|
White CL, Bloch JI, Morse PE, Silcox MT. Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Euarchonta) and early primate brain evolution. J Hum Evol 2023; 175:103303. [PMID: 36608392 DOI: 10.1016/j.jhevol.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Paleogene microsyopid plesiadapiforms are among the oldest euarchontans known from relatively complete crania. While cranial endocasts are known for larger-bodied Eocene microsyopine microsyopids, this study documents the first virtual endocast for the more diminutive uintasoricine microsyopids, derived from a specimen of Niptomomys cf. Niptomomys doreenae (USNM 530198) from the late Paleocene of Wyoming. Size estimates of smaller-bodied uintasoricines are similar to those inferred for the common ancestor of Primates, so the virtual endocast of Niptomomys may provide a useful model to study early primate brain evolution. Due to the broken and telescoped nature of the neurocranium of USNM 530198, a μCT scan of the specimen was used to create a 3D model of multiple bone fragments that were then independently isolated, repositioned, and merged to form a cranial reconstruction from which a virtual endocast was extracted. The virtual endocast of Niptomomys has visible caudal colliculi, suggesting less caudal expansion of the cerebrum compared to that of euprimates, but similar to that of several other plesiadapiforms. The part of the endocast representing the olfactory bulbs is larger relative to overall endocast volume in Niptomomys (8.61%) than that of other known plesiadapiforms (∼5%) or euprimates (<3.5%). The petrosal lobules (associated with visual stabilization) are relatively large for a Paleocene placental mammal (1.66%). The encephalization quotient of Niptomomys is relatively high (range = 0.35-0.85) compared to that of Microsyops (range = 0.32-0.52), with the upper estimates in the range of values calculated for early euprimates. However, this contrast likely relates in part to the small size of the taxon, and is not associated with evidence of neocortical expansion. These findings are consistent with a model of shifting emphasis in primate evolution toward functions of the cerebrum and away from olfaction with the origin of euprimates.
Collapse
Affiliation(s)
- Chelsea L White
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA
| | - Paul E Morse
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada.
| |
Collapse
|
7
|
Hartje V, Illemann MJ, Schmidtke D. Motion cues increase focused attention towards purely visual stimuli in a nocturnal primate and drive stimulus interaction and approach/avoidance in a context-dependent manner. Am J Primatol 2021; 83:e23286. [PMID: 34169554 DOI: 10.1002/ajp.23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Visual information is of pivotal ecological importance to monkeys, apes, and humans, whereas its role in nocturnal primate ecology is less well understood. We explored how purely visual information modulates the behavior of a nocturnal primate. Abstract (shape), photographic (shape + detail), or video (shape + detail + motion) representations of arthropod prey (Zophobas morio; food context) or a male conspecific (social context) were systematically presented to 22 individuals of the gray mouse lemur (Microcebus murinus) using a touchscreen. We assessed stimulus-directed touch interactions, durations of focused visual attention towards the different stimuli, and durations spent in the half of the setup-chamber more distant to the touchscreen (as quantification of approach/avoidance). Focused attention towards the stimulus generally increased from abstract and photographic to videographic stimuli. For the food context, indications for a parallel increase in stimulus-directed touch interactions from abstract stimulus to video were found. Approach/avoidance was independent of the stimulus type within both contexts. A comparison between the contexts under the video condition revealed higher durations of visual attention and lower stimulus avoidance in the food context compared to the social context. The number of touch interactions with the video stimulus was not generally context-dependent, but context-dependency related to sex: In the food context, animals with high and low numbers of touch interactions were equally distributed across sexes. In the social context, females showed the highest numbers of touch interactions. Numbers in males declined compared to the food context. Our results demonstrate for the first time that purely visual information modulates mouse lemur behavior and focused attention in a content- and context-specific manner, suggesting that vision is of high importance for the ecology of these nocturnal primates. The findings emphasize the need for further vision-based experiments to gain deeper insight into the evolution of visual information processing and cognition in nocturnal primates.
Collapse
Affiliation(s)
- Valeria Hartje
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Michele J Illemann
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
8
|
Le Verger K, Hautier L, Bardin J, Gerber S, Delsuc F, Billet G. Ontogenetic and static allometry in the skull and cranial units of nine-banded armadillos (Cingulata: Dasypodidae: Dasypus novemcinctus). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
A large part of extant and past mammalian morphological diversity is related to variation in size through allometric effects. Previous studies suggested that craniofacial allometry is the dominant pattern underlying mammalian skull shape variation, but cranial allometries were rarely characterized within cranial units such as individual bones. Here, we used 3D geometric morphometric methods to study allometric patterns of the whole skull (global) and of cranial units (local) in a postnatal developmental series of nine-banded armadillos (Dasypus novemcinctus ssp.). Analyses were conducted at the ontogenetic and static levels, and for successive developmental stages. Our results support craniofacial allometry as the global pattern along with more local allometric trends, such as the relative posterior elongation of the infraorbital canal, the tooth row reduction on the maxillary, and the marked development of nuchal crests on the supraoccipital with increasing skull size. Our study also reports allometric proportions of shape variation varying substantially among cranial units and across ontogenetic stages. The multi-scale approach advocated here allowed unveiling previously unnoticed allometric variations, indicating an untapped complexity of cranial allometric patterns to further explain mammalian morphological evolution.
Collapse
Affiliation(s)
- Kévin Le Verger
- Museum national d’Histoire naturelle, Centre de Recherche en Paléontologie – Paris, UMR 7207 CR2P MNHN/CNRS/UPMC, Sorbonne Universités, Paris, France
| | - Lionel Hautier
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 ISEM CNRS/IRD/EPHE, Montpellier cedex, France
- Natural History Museum of London, Department of Life Sciences, Mammal Section, London, UK
| | - Jérémie Bardin
- Museum national d’Histoire naturelle, Centre de Recherche en Paléontologie – Paris, UMR 7207 CR2P MNHN/CNRS/UPMC, Sorbonne Universités, Paris, France
| | - Sylvain Gerber
- Muséum national d’Histoire naturelle, Institut de Systématique, Évolution, Biodiversité, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, Sorbonne Universités, Paris, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 ISEM CNRS/IRD/EPHE, Montpellier cedex, France
| | - Guillaume Billet
- Museum national d’Histoire naturelle, Centre de Recherche en Paléontologie – Paris, UMR 7207 CR2P MNHN/CNRS/UPMC, Sorbonne Universités, Paris, France
| |
Collapse
|
9
|
M Janis C, Figueirido B, DeSantis L, Lautenschlager S. An eye for a tooth: Thylacosmilus was not a marsupial "saber-tooth predator". PeerJ 2020; 8:e9346. [PMID: 32617190 PMCID: PMC7323715 DOI: 10.7717/peerj.9346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Saber-toothed mammals, now all extinct, were cats or “cat-like” forms with enlarged, blade-like upper canines, proposed as specialists in taking large prey. During the last 66 Ma, the saber-tooth ecomorph has evolved convergently at least in five different mammalian lineages across both marsupials and placentals. Indeed, Thylacosmilus atrox, the so-called “marsupial saber-tooth,” is often considered as a classic example of convergence with placental saber-tooth cats such as Smilodon fatalis. However, despite its superficial similarity to saber-toothed placentals, T. atrox lacks many of the critical anatomical features related to their inferred predatory behavior—that of employing their enlarged canines in a killing head strike. Methods Here we follow a multi-proxy approach using canonical correspondence analysis of discrete traits, biomechanical models of skull function using Finite Element Analysis, and 3D dental microwear texture analysis of upper and lower postcanine teeth, to investigate the degree of evolutionary convergence between T. atrox and placental saber-tooths, including S. fatalis. Results Correspondence analysis shows that the craniodental features of T. atrox are divergent from those of placental saber-tooths. Biomechanical analyses indicate a superior ability of T. atrox to placental saber-tooths in pulling back with the canines, with the unique lateral ridge of the canines adding strength to this function. The dental microwear of T. atrox indicates a soft diet, resembling that of the meat-specializing cheetah, but its blunted gross dental wear is not indicative of shearing meat. Conclusions Our results indicate that despite its impressive canines, the “marsupial saber-tooth” was not the ecological analogue of placental saber-tooths, and likely did not use its canines to dispatch its prey. This oft-cited example of convergence requires reconsideration, and T. atrox may have had a unique type of ecology among mammals.
Collapse
Affiliation(s)
- Christine M Janis
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
| | - Borja Figueirido
- Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Larisa DeSantis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America.,Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Stephan Lautenschlager
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Casares-Hidalgo C, Pérez-Ramos A, Forner-Gumbau M, Pastor FJ, Figueirido B. Taking a look into the orbit of mammalian carnivorans. J Anat 2019; 234:622-636. [PMID: 30861123 DOI: 10.1111/joa.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
In this study, we explore the relationship between orbit anatomy and different ecological factors in carnivorous mammals from a phylogenetic perspective. We calculated the frontation (α), convergence (β), and orbitotemporal (Ω) angles of the orbit from 3D coordinates of anatomical landmarks in a wide sample of carnivores with different kinds of visual strategy (i.e. photopic, scotopic, and mesopic), habitat (i.e. open, mixed, and closed), and substrate use (i.e. arboreal, terrestrial, and aquatic). We used Bloomberg's K and Pagel's λ to assess phylogenetic signal in frontation, convergence, and orbitotemporal angles. The association of orbit orientation with skull length and ecology was explored using phylogenetic generalized least squares and phylogenetic manova, respectively. Moreover, we also computed phylomorphospaces from orbit orientation. Our results indicate that there is not a clear association between orbit orientation and the ecology of living carnivorans. We hypothesize that the evolution of the orbit in mammalian carnivores represents a new case of an ecological bottleneck specific to carnivorans. New directions for future research are discussed in light of this new evidence.
Collapse
Affiliation(s)
- Carlos Casares-Hidalgo
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel Forner-Gumbau
- Departament de Matemàtiques, Facultat de Ciències, Universitat Jaume I (Castelló de la Plana), Castellón de la Plana, Spain
| | - Francisco J Pastor
- Departmento de Anatomía y Radiología, Museo de Anatomía, Universidad de Valladolid, Valladolid, Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
11
|
Ross CF, Porro LB, Herrel A, Evans SE, Fagan MJ. Bite force and cranial bone strain in four species of lizards. J Exp Biol 2018; 221:jeb.180240. [DOI: 10.1242/jeb.180240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022]
Abstract
In vivo bone strain data provide direct evidence of strain patterns in the cranium during biting. Compared to mammals, in vivo bone strains in lizard skulls are poorly documented. This paper presents strain data from the skulls of Anolis equestris, Gekko gecko, Iguana iguana and Salvator merianae during transducer biting. Analysis of variance was used to investigate effects of bite force, bite point, diet, cranial morphology and cranial kinesis on strain magnitudes. Within individuals the most consistent determinants of variance in bone strain magnitudes are gage location and bite point, with the importance of bite force varying between individuals. Inter-site variance in strain magnitudes—strain gradient—is present in all individuals, and varies with bite point. Between individuals within species, variance in strain magnitude is driven primarily by variation in bite force, not gage location or bite point, suggesting that inter-individual variation in patterns of strain magnitude is minimal. Between species, variation in strain magnitudes is significantly impacted by bite force and species membership, as well as by interactions between gage location, species, and bite point. Independent of bite force, species differences in cranial strain magnitudes may reflect selection for different cranial morphology in relation to feeding function, but what these performance criteria are is not clear. The relatively low strain magnitudes in Iguana and Uromastyx compared to other lizards may be related to their herbivorous diet. Cranial kinesis and the presence or absence of postorbital and supratemporal bars are not important determinants of inter-specific variation in strain magnitudes.
Collapse
Affiliation(s)
- Callum F. Ross
- Organismal Biology & Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Laura B. Porro
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Anthony Herrel
- Sorbonne Universités, Département Adaptations du Vivant, UMR 7179, C.N.R.S/M.N.H.N., Paris, France
| | - Susan E. Evans
- Department of Cell and Developmental Biology, UCL, University College London, London, WC1E 6BT, UK
| | - Michael J. Fagan
- School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
12
|
Pilatti P, Astúa D. Orbit orientation in didelphid marsupials (Didelphimorphia: Didelphidae). Curr Zool 2017; 63:403-415. [PMID: 29492000 PMCID: PMC5804188 DOI: 10.1093/cz/zow068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Usually considered a morphologically conservative group, didelphid marsupials present considerable variation in ecology and body size, some of which were shown to relate to morphological structures. Thus, changes on orbit morphology are likely and could be related to that variation. We calculated orbit orientation in 873 specimens of 16 Didelphidae genera yielding estimates of orbits convergence (their position relative to midsagittal line) and verticality (their position relative to frontal plane). We then compared similarities in these variables across taxa to ecological, morphological and phylogenetic data to evaluate the influencing factors on orbit orientation in didelphids. We found an inverse relation between convergence and verticality. Didelphids orbits have low verticality but are highly convergent, yet orbit orientation differs significantly between taxa, and that variation is related to morphological aspects of the cranium. Rostral variables are the only morphological features correlated with orbit orientation: increasing snout length yields more convergent orbits, whereas increase on snout breadth imply in more vertical orbits. Size and encephalization quotients are uncorrelated with orbit orientation. Among ecological data, diet showed significant correlation whereas locomotion is the factor that less affects the position of orbits. Phylogeny is uncorrelated to any orbital parameters measured. Ecological factors seemingly play a more important role on orbit orientation than previously expected, and differentiation on orbit orientation seems to be more functional than inherited. Thus, despite the apparent homogeneity on didelphid morphology, there is subtle morphological variability that may be directly related to feeding behavior.
Collapse
Affiliation(s)
- Patricia Pilatti
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego S/N, Cidade Universitária, Recife, PE 50670-901, Brazil
| | - Diego Astúa
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego S/N, Cidade Universitária, Recife, PE 50670-901, Brazil
| |
Collapse
|
13
|
Harvey BM, Bhatnagar KP, Schenck RJ, Rosenberger AL, Rehorek SJ, Burrows AM, DeLeon VB, Smith TD. Membranous Support for Eyes of Strepsirrhine Primates and Fruit Bats. Anat Rec (Hoboken) 2017; 299:1690-1703. [PMID: 27870352 DOI: 10.1002/ar.23468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 11/09/2022]
Abstract
Living primates have relatively large eyes and support orbital tissues with a postorbital bar (POB) and/or septum. Some mammals with large eyes lack a POB, and presumably rely on soft tissues. Here, we examined the orbits of four species of strepsirrhine primates (Galagidae, Cheirogaleidae) and three species of fruit bats (Pteropodidae). Microdissection and light microscopy were employed to identify support structures of the orbit. In bats and primates, there are two layers of fascial sheets that border the eye laterally. The outer membrane is the most superficial layer of deep fascia, and has connections to the POB in primates. In fruit bats, which lacked a POB or analogous ligament, the deep fascia is reinforced by transverse ligaments. Bats and primates have a deeper membrane supporting the eye, identified as the periorbita (PA) based on the presence of elastic fibers and smooth muscle. The PA merges with periostea deep within the orbit, but has no periosteal attachment to the POB of primates. These findings demonstrate that relatively big eyes can be supported primarily with fibrous connective tissues as well as the PA, in absence of a POB or ligament. The well-developed smooth muscle component within the PA of fruit bats likely helps to protrude the eye, maintaining a more convergent eye orientation, with greater overlap of the visual fields. The possibility should be considered that early euprimates, and even stem primates that may have lacked a POB, also had more convergent eyes than indicated by osseous measurements of orbital orientation. Anat Rec, 299:1690-1703, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brianna M Harvey
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Kunwar P Bhatnagar
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Robert J Schenck
- Physical Sciences Department, Kingsborough Community College, New York
| | - Alfred L Rosenberger
- Department of Anthropology and Archaeology, Brooklyn College, CUNY, Brooklyn, New York
| | - Susan J Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Anne M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania.,Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, 16057.,Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Márquez S, Pagano AS, Schwartz JH, Curtis A, Delman BN, Lawson W, Laitman JT. Toward Understanding the Mammalian Zygoma: Insights From Comparative Anatomy, Growth and Development, and Morphometric Analysis. Anat Rec (Hoboken) 2016; 300:76-151. [DOI: 10.1002/ar.23485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Samuel Márquez
- Department of Cell Biology; SUNY Downstate Medical Center; New York New York
- Department of Otolaryngology, SUNY Downstate Medical Center, New York, New York
| | - Anthony S. Pagano
- Department of Cell Biology; New York University School of Medicine; New York New York
| | - Jeffrey H. Schwartz
- Department of Anthropology; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Abigail Curtis
- Department of Mammalogy; American Museum of Natural History; New York New York
| | - Bradley N. Delman
- Department of Radiology; Icahn School of Medicine at Mount Sinai; New York New York
| | - William Lawson
- Department of Otolaryngology; Icahn School of Medicine at Mount Sinai; New York New York
| | - Jeffrey T. Laitman
- Department of Otolaryngology; Icahn School of Medicine at Mount Sinai; New York New York
- Center of Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Baker J, Meade A, Pagel M, Venditti C. Positive phenotypic selection inferred from phylogenies. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12649] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joanna Baker
- School of Biological Sciences; University of Reading; Reading RG6 6BX UK
| | - Andrew Meade
- School of Biological Sciences; University of Reading; Reading RG6 6BX UK
| | - Mark Pagel
- School of Biological Sciences; University of Reading; Reading RG6 6BX UK
- Santa Fe Institute; Santa Fe NM 87501 USA
| | - Chris Venditti
- School of Biological Sciences; University of Reading; Reading RG6 6BX UK
| |
Collapse
|
16
|
Banks MS, Sprague WW, Schmoll J, Parnell JAQ, Love GD. Why do animal eyes have pupils of different shapes? SCIENCE ADVANCES 2015; 1:e1500391. [PMID: 26601232 PMCID: PMC4643806 DOI: 10.1126/sciadv.1500391] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/28/2015] [Indexed: 05/24/2023]
Abstract
There is a striking correlation between terrestrial species' pupil shape and ecological niche (that is, foraging mode and time of day they are active). Species with vertically elongated pupils are very likely to be ambush predators and active day and night. Species with horizontally elongated pupils are very likely to be prey and to have laterally placed eyes. Vertically elongated pupils create astigmatic depth of field such that images of vertical contours nearer or farther than the distance to which the eye is focused are sharp, whereas images of horizontal contours at different distances are blurred. This is advantageous for ambush predators to use stereopsis to estimate distances of vertical contours and defocus blur to estimate distances of horizontal contours. Horizontally elongated pupils create sharp images of horizontal contours ahead and behind, creating a horizontally panoramic view that facilitates detection of predators from various directions and forward locomotion across uneven terrain.
Collapse
Affiliation(s)
- Martin S. Banks
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William W. Sprague
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jürgen Schmoll
- Department of Physics and Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| | - Jared A. Q. Parnell
- Department of Physics and Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| | - Gordon D. Love
- Department of Physics and Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
17
|
First Approach to the Paleobiology of Extinct Prospaniomys (Rodentia, Hystricognathi, Octodontoidea) Through Head Muscle Reconstruction and the Study of Craniomandibular Shape Variation. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9291-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kraatz BP, Sherratt E, Bumacod N, Wedel MJ. Ecological correlates to cranial morphology in Leporids (Mammalia, Lagomorpha). PeerJ 2015; 3:e844. [PMID: 25802812 PMCID: PMC4369340 DOI: 10.7717/peerj.844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
The mammalian order Lagomorpha has been the subject of many morphometric studies aimed at understanding the relationship between form and function as it relates to locomotion, primarily in postcranial morphology. The leporid cranial skeleton, however, may also reveal information about their ecology, particularly locomotion and vision. Here we investigate the relationship between cranial shape and the degree of facial tilt with locomotion (cursoriality, saltation, and burrowing) within crown leporids. Our results suggest that facial tilt is more pronounced in cursors and saltators compared to generalists, and that increasing facial tilt may be driven by a need for expanded visual fields. Our phylogenetically informed analyses indicate that burrowing behavior, facial tilt, and locomotor behavior do not predict cranial shape. However, we find that variables such as bullae size, size of the splenius capitus fossa, and overall rostral dimensions are important components for understanding the cranial variation in leporids.
Collapse
Affiliation(s)
- Brian P Kraatz
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Emma Sherratt
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University , Ames, IA , USA
| | - Nicholas Bumacod
- College of Dental Medicine, Western University of Health Sciences , Pomona, CA , USA
| | - Mathew J Wedel
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA ; College of Podiatric Medicine, Western University of Health Sciences , Pomona, CA , USA
| |
Collapse
|
19
|
Porro LB, Ross CF, Iriarte-Diaz J, O'Reilly JC, Evans SE, Fagan MJ. In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri. ACTA ACUST UNITED AC 2014; 217:1983-92. [PMID: 24577443 PMCID: PMC4059540 DOI: 10.1242/jeb.096362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology.
Collapse
Affiliation(s)
- Laura B Porro
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Jose Iriarte-Diaz
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - James C O'Reilly
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, University College London, Gower Street, London WCIE 6BT, UK
| | - Michael J Fagan
- School of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
20
|
Rosenberger AL. Fallback foods, preferred foods, adaptive zones, and primate origins. Am J Primatol 2013; 75:883-90. [DOI: 10.1002/ajp.22162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 11/09/2022]
|
21
|
Smith TD, Deleon VB, Rosenberger AL. At Birth, Tarsiers Lack a Postorbital Bar or Septum. Anat Rec (Hoboken) 2013; 296:365-77. [DOI: 10.1002/ar.22648] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/21/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy D. Smith
- School of Physical Therapy; Slippery Rock University; Slippery Rock Pennsylvania USA
- Department of Anthropology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Valerie B. Deleon
- Center for Functional Anatomy and Evolution; Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Alfred L. Rosenberger
- Department of Anthropology and Archaeology; Brooklyn College, CUNY; Brooklyn New York USA
| |
Collapse
|
22
|
|
23
|
Hautier L, Lebrun R, Cox PG. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J Morphol 2012; 273:1319-37. [DOI: 10.1002/jmor.20061] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/07/2022]
|
24
|
Predictors of orbital convergence in primates: A test of the snake detection hypothesis of primate evolution. J Hum Evol 2011; 61:233-42. [DOI: 10.1016/j.jhevol.2011.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/27/2022]
|
25
|
Herring SW, Rafferty KL, Liu ZJ, Lemme M. Mastication and the postorbital ligament: dynamic strain in soft tissues. Integr Comp Biol 2011; 51:297-306. [PMID: 21593142 DOI: 10.1093/icb/icr023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although the FEED database focuses on muscle activity patterns, it is equally suitable for other physiological recording and especially for synthesizing different types of information. The present contribution addresses the interaction between muscle activity and ligamentary stretch during mastication. The postorbital ligament is the thickened edge of a septum dividing the orbital contents from the temporal fossa and is continuous with the temporal fascia. As a tensile element, this fascial complex could support the zygomatic arch against the pull of the masseter muscle. An ossified postorbital bar has evolved repeatedly in mammals, enabling resistance to compression and shear in addition to tension. Although such ossification clearly reinforces the skull against muscle pull, the most accepted explanation is that it helps isolate the orbital contents from contractions of the temporalis muscle. However, it has never been demonstrated that the contraction of jaw muscles deforms the unossified ligament. We examined linear deformation of the postorbital ligament in minipigs, Sus scrofa, along with electromyography of the jaw muscles and an assessment of changes in pressure and shape in the temporalis. During chewing, the ligament elongated (average 0.9%, maximum 2.8%) in synchrony with the contraction of the elevator muscles of the jaw. Although the temporalis bulged outward and created substantial pressure against the braincase, the superficial fibers usually retracted caudally, away from the postorbital ligament. In anesthetized animals, stimulating either the temporalis or the masseter muscle in isolation usually elongated the ligament (average 0.4-0.7%). These results confirm that contraction of the masticatory muscles can potentially distort the orbital contents and further suggest that the postorbital ligament does function as a tension member resisting the pull of the masseter on the zygomatic arch.
Collapse
Affiliation(s)
- Susan W Herring
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, USA.
| | | | | | | |
Collapse
|
26
|
Heesy CP, Kamilar JM, Willms J. Retinogeniculostriate pathway components scale with orbit convergence only in primates and not in other mammals. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:105-15. [PMID: 21525747 DOI: 10.1159/000324860] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
Studies of the relative sizes of brain components in mammals suggest that areas responsible for sensory processing, including visual processing, are correlated with aspects of ecology, especially activity pattern. Some studies suggest that primate orbit convergence and binocular vision are correlated with the overall size of the brain as well as components of the visual pathway, such as the lateral geniculate nucleus. However, the question remains whether components of the visual pathway are correlated with orbit convergence and binocular visual field overlap in nonprimate mammals. Here, we examine the relationship between orbit convergence and the volumes of components of the visual pathway (optic tract, dorsal lateral geniculate nucleus and primary visual cortex). Data on orbit orientation are combined with those on overall brain volume as well as brain component volumes in a taxonomically diverse sample of mammals. Our results demonstrate that nonprimate mammals scale isometrically for component volumes along the visual pathway, whereas primates display negatively allometric relationships. However, only among primates is higher orbit convergence correlated with volumetrically larger lateral geniculate nuclei and visual cortices. Diurnal primates exhibit statistically larger visual pathway components when compared to nocturnal primates. Nonprimate mammals do not display activity pattern differences with the single exception of optic tract sizes. We conclude that binocular vision was a much stronger factor in the evolution of the visual system in primates than in other mammals.
Collapse
Affiliation(s)
- Christopher P Heesy
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
| | | | | |
Collapse
|
27
|
Iwaniuk AN, Heesy CP, Hall MI. Morphometrics of the eyes and orbits of the nocturnal Swallow-tailed Gull (Creagrus furcatus). CAN J ZOOL 2010. [DOI: 10.1139/z10-051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Swallow-tailed Gull ( Creagrus furcatus (Neboux, 1846)) is known for its nocturnal feeding habits and apparently large eyes. Despite frequent observations of its large eyes, detailed measurements of its eyes and orbits are wanting. Here, we provide a detailed analysis of the size and shape of the eye and orbits of this unique species in relation to a range of other gull species. Although the C. furcatus does have a slightly enlarged cornea and optical axis, neither the transverse orbit diameter nor the shape of its eye differs significantly from other larids. In addition, we found no significant difference between C. furcatus and other gulls in terms of its orbit dimensions and orbit orientation. We therefore conclude that C. furcatus does not possess a transversely enlarged eye, but rather a slightly larger cornea and longer eye. Our results do not, however, preclude the presence of other changes in the visual system, such as retinal morphology or neurophysiology, that could be adaptive for nocturnal feeding.
Collapse
Affiliation(s)
- Andrew N. Iwaniuk
- Division of Birds, National Museum of Natural History, Washington, DC 20718, USA
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Anatomy, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
- Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| | - Christopher P. Heesy
- Division of Birds, National Museum of Natural History, Washington, DC 20718, USA
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Anatomy, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
- Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| | - Margaret I. Hall
- Division of Birds, National Museum of Natural History, Washington, DC 20718, USA
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Anatomy, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
- Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
28
|
Finarelli JA, Goswami A. The evolution of orbit orientation and encephalization in the Carnivora (Mammalia). J Anat 2010; 214:671-8. [PMID: 19438762 DOI: 10.1111/j.1469-7580.2009.01061.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Evolutionary change in encephalization within and across mammalian clades is well-studied, yet relatively few comparative analyses attempt to quantify the impact of evolutionary change in relative brain size on cranial morphology. Because of the proximity of the braincase to the orbits, and the inter-relationships among ecology, sensory systems and neuroanatomy, a relationship has been hypothesized between orbit orientation and encephalization for mammals. Here, we tested this hypothesis in 68 fossil and living species of the mammalian order Carnivora, comparing orbit orientation angles (convergence and frontation) to skull length and encephalization. No significant correlations were observed between skull length and orbit orientation when all taxa were analysed. Significant correlations were observed between encephalization and orbit orientation; however, these were restricted to the families Felidae and Canidae. Encephalization is positively correlated with frontation in both families and negatively correlated with convergence in canids. These results indicate that no universal relationship exists between encephalization and orbit orientation for Carnivora. Braincase expansion impacts orbit orientation in specific carnivoran clades, the nature of which is idiosyncratic to the clade itself.
Collapse
Affiliation(s)
- John A Finarelli
- Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
29
|
Silcox MT, Benham AE, Bloch JI. Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. J Hum Evol 2010; 58:505-21. [PMID: 20444495 DOI: 10.1016/j.jhevol.2010.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
We describe a virtual endocast produced from ultra high resolution X-ray computed tomography (CT) data for the microsyopid, Microsyops annectens (middle Eocene, Wyoming). It is the most complete and least distorted endocast known for a plesiadapiform primate and because of the relatively basal position of Microsyopidae, has particular importance to reconstructing primitive characteristics for Primates. Cranial capacity is estimated at 5.9 cm(3), yielding encephalization quotients (EQ) of 0.26-0.39 (Jerison's equation) and 0.32-0.52 (Eisenberg's equation), depending on the body mass estimate. Even the lowest EQ estimate for M. annectens is higher than that for Plesiadapis cookei, while the range of estimates overlaps with that of Ignacius graybullianus and with the lower end of the range of estimates for fossil euprimates. As in other plesiadapiforms, the olfactory bulbs of M. annectens are large. The cerebrum does not extend onto the cerebellum or form a ventrally protruding temporal lobe with a clear temporal pole, suggesting less development of the visual sense and a greater emphasis on olfaction than in euprimates. Contrasts between the virtual endocast of M. annectens, and both a natural endocast of the same species and a partial endocast from the earlier-occurring Microsyops sp., cf. Microsyops elegans, suggest that the coverage of the caudal colliculi by the cerebrum evolved within the Microsyops lineage. This implies that microsyopids expanded their cerebra and perhaps evolved an improved visual sense independent of euprimates. With a growing body of data on the morphology of the brain in primitive primates, it is becoming clear that many of the characteristics of the brain common to euprimates evolved after the divergence of stem primates from other euarchontans and likely in parallel in different lineages. These new data suggest a different model for the ancestors of euprimates than has been assumed based on the anatomy of the brain in visually specialized diurnal tree shrews.
Collapse
Affiliation(s)
- Mary T Silcox
- Department of Anthropology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada.
| | | | | |
Collapse
|
30
|
Heesy CP. Seeing in stereo: The ecology and evolution of primate binocular vision and stereopsis. Evol Anthropol 2009. [DOI: 10.1002/evan.20195] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Lopez EKN, Stock SR, Taketo MM, Chenn A, Ravosa MJ. A novel transgenic mouse model of fetal encephalization and craniofacial development. Integr Comp Biol 2008; 48:360-72. [DOI: 10.1093/icb/icn047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Cox PG. A quantitative analysis of the Eutherian orbit: correlations with masticatory apparatus. Biol Rev Camb Philos Soc 2008; 83:35-69. [PMID: 18211281 DOI: 10.1111/j.1469-185x.2007.00031.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mammalian orbit, or eye-socket, is a highly plastic region of the skull. It comprises between seven and nine bones, all of which vary widely in their contribution to this region among the different mammalian orders and families. It is hypothesised that the structure of the mammalian orbit is principally influenced by the forces generated by the jaw-closing musculature. In order to quantify the orbit, fourteen linear, angular and area measurements were taken from 84 species of placental mammals using a Microscribe-3D digitiser. The results were then analysed using principal components analysis. The results of the multivariate analysis on untransformed data showed a clear division of the mammalian taxa into temporalis-dominant forms and masseter-dominant forms. This correlation between orbital structure and masticatory musculature was reinforced by results from the size-corrected data, which showed a separation of the taxa into the three specialised feeding types proposed by Turnbull (1970): i.e. 'carnivore-shear', 'ungulate-grinding' and 'rodent-gnawing'. Moreover, within the rodents there was a clear distinction between species in which the masseter is highly developed and those in which the temporalis has more prominence. These results were reinforced by analysis of variance which showed significant differences in the relative orbital areas of certain bones between temporalis-dominant and masseter-dominant taxa. Subsequent cluster analysis suggested that most of the variables could be grouped into three assemblages: those associated with the length of the rostrum; those associated with the width of the skull; and those associated with the relative size of the orbit and the shape of the face. However, the relative area of the palatine bone showed weak correlations with the other variables and did not fit into any group. Overall the relative area of the palatine was most closely correlated with feeding type, and this measure that appeared to be most strongly associated with the arrangement of the masticatory musculature. These results give a strong indication that, although orbital structure is in part determined by the relative size and orientation of the orbits, the forces generated by the muscles of mastication also have a large effect.
Collapse
Affiliation(s)
- Philip G Cox
- University Museum of Zoology, Downing Street, Cambridge, CB2 3EJ, UK.
| |
Collapse
|
33
|
Heesy CP. Ecomorphology of Orbit Orientation and the Adaptive Significance of Binocular Vision in Primates and Other Mammals. BRAIN, BEHAVIOR AND EVOLUTION 2007; 71:54-67. [PMID: 17878718 DOI: 10.1159/000108621] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/06/2007] [Indexed: 11/19/2022]
Abstract
Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins.
Collapse
Affiliation(s)
- Christopher P Heesy
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| |
Collapse
|
34
|
Lemelin P, Jungers WL. Body size and scaling of the hands and feet of prosimian primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 133:828-40. [PMID: 17340639 DOI: 10.1002/ajpa.20586] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hands and feet of primates fulfill a variety of biological roles linked with food acquisition and positional behavior. Current explanations of shape differences in cheiridial morphology among prosimians are closely tied to body size differences. Although numerous studies have examined the relationships between body mass and limb morphology in prosimians, no scaling analysis has specifically considered hand and foot dimensions and intrinsic proportions. In this study, we present such an analysis for a sample of 270 skeletal specimens distributed over eight prosimian families. The degree of association between size and shape was assessed using nonparametric correlational techniques, while the relationship between each ray element length and body mass (from published data and a body mass surrogate) was tested for allometric scaling. Since tarsiers and strepsirrhines encompass many taxa of varying degrees of phylogenetic relatedness, effective degrees of freedom were calculated, and comparisons between families were performed to partially address the problem of statistical nonindependence and "phylogenetic inertia." Correlational analyses indicate negative allometry between relative phalangeal length (as reflected by phalangeal indices) and body mass, except for the pollex and hallux. Thus, as size increases, there is a significant decrease in the relative length of the digits when considering all prosimian taxa sampled. Regression analyses show that while the digital portion of the rays scales isometrically with body mass, the palmar/plantar portion of the rays often scales with positive allometry. Some but not all of these broadly interspecific allometric patterns remain statistically significant when effective degrees of freedom are taken into account. As is often the case in interspecific scaling, comparisons within families show different scaling trends in the cheiridia than those seen across families (i.e., lorisids, indriids, and lemurids exhibit rather different allometries). The interspecific pattern of positive allometry that appears to best characterize the metapodials of prosimians, especially those of the foot, parallels differences found in the morphology of the volar skin. Indeed, relatively longer metapodials appear to covary with flatter and more coalesced volar pads, which in turn slightly improve frictional force for animals that are at a comparative disadvantage while climbing because of their larger mass. Despite the essentially isometric relationship found between digit length and body mass across prosimians, examination of the residual variation reveals that tarsiers and Daubentonia possess, relative to their body sizes, remarkably long fingers. Such marked departures between body size and finger length observed in these particular primates are closely linked with specialized modes of prey acquisition and manipulation involving the hands.
Collapse
Affiliation(s)
- Pierre Lemelin
- Division of Anatomy, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| | | |
Collapse
|