1
|
Ponssa ML, Fratani J, Barrionuevo JS. Unravelling drivers on the morphological diversification of the terminal phalanx in hyloid frogs. Zool J Linn Soc 2024; 202. [DOI: 10.1093/zoolinnean/zlae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The anuran locomotor system integrates traits that are influenced by phylogenetic, ecological, and development constraints. Given their significance to locomotion, we studied terminal phalange morphology in the Hyloidea group. We aim to deduce if morphological variability stems from phylogenetic, ecological, or life-cycle constraints. We explore the influence of size on variation and assess if evolutionary rates and shape disparities differ among the groups under consideration. Finally, we optimized phalangeal morphology within the phylogenetic framework to delineate evolutionary trends. We included 424 specimens of 128 species representing 17 families of Hyloidea and two of non-hyloid anurans. Configuration of the terminal phalanx was quantified using geometric morphometrics and characterized through qualitative traits. We established four categories based on microhabitats and locomotor abilities. Our life-cycle categorization distinguishes species by their consistent or changing microhabitat across larval and adult stages. The results show a complex scenario, where certain clades occupy distinct regions of morphospace, but there is also a relationship between phalangeal shape, microhabitats, and locomotor abilities. However, both the phylogenetic signal and the relationship with microhabitats and locomotor abilities are not particularly robust. Species inhabiting arboreal microhabitats develop convergent traits to thrive in this niche, such as rounded proximal epiphysis and the claw-shaped phalanx. Morphological disparity was higher in walkers, which also includes arboreal species, prompting further questions on the demands of locomotion in vertical substrates.
Collapse
Affiliation(s)
- M L Ponssa
- Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251 , 4000, San Miguel de Tucumán ,
| | - J Fratani
- Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251 , 4000, San Miguel de Tucumán ,
| | - J S Barrionuevo
- Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251 , 4000, San Miguel de Tucumán ,
- Fundación Miguel Lillo , Miguel Lillo 251, 4000, San Miguel de Tucumán ,
| |
Collapse
|
2
|
Witzmann F, Fröbisch N. Morphology and ontogeny of carpus and tarsus in stereospondylomorph temnospondyls. PeerJ 2023; 11:e16182. [PMID: 37904842 PMCID: PMC10613440 DOI: 10.7717/peerj.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023] Open
Abstract
Skeletal development is well known in temnospondyls, the most diverse group of Paleozoic and Mesozoic amphibians. However, the elements of carpus and tarsus (i.e., the mesopodium) were always the last bones to ossify relative to the other limb bones and with regard to the rest of the skeleton, and are preserved only in rare cases. Thus, in contrast to the other parts of the limb skeleton, little is known about the ontogeny and sequence of ossification of the temnospondyl carpus and tarsus. We intended to close this gap by studying the ontogenies of a number of Permo/Carboniferous stereospondylomorphs, the only temnospondyls with preserved growth series in which the successive ossification of carpals and tarsals can be traced. Studying the degree of mesopodial ossification within the same species show that it is not necessarily correlated with body size. This indicates that individual age rather than size determined the degree of mesopodial ossification in stereospondylomorphs and that the largest individuals are not necessarily the oldest ones. In the stereospondylomorph tarsus, the distal tarsals show preaxial development in accordance with most early tetrapods and salamanders. However, the more proximal mesopodials exhibit postaxial dominance, i.e., the preaxial column (tibiale, centrale 1) consistently started to ossify after the central column (centralia 2-4, intermedium) and the postaxial column (fibulare). Likewise, we observed preaxial development of the distal carpals in the stereospondylomorph carpus, as in most early tetrapods for which a statement can be made. However, in contrast to the tarsus, the more proximal carpals were formed by preaxial development, i.e., the preaxial column (radiale, centrale 1) ossified after the central column (centralia 2-4, intermedium) and before the postaxial column (ulnare). This pattern is unique among known early tetrapods and occurs only in certain extant salamanders. Furthermore, ossification proceeded from distal to proximal in the central column of the stereospondylomorph carpus, whereas the ossification advanced from proximal to distal in the central column of the tarsus. Despite these differences, a general ossification pattern that started from proximolateral (intermedium or centrale 4) to mediodistal (distal tarsal and carpal 1) roughly in a diagonal line is common to all stereospondylomorph mesopodials investigated. This pattern might basically reflect the alignment of stress within the mesopodium during locomotion. Our observations might point to a greater variability in the development of the mesopodium in stereospondylomorphs and probably other early tetrapods than in most extant tetrapods, possibly mirroring a similar variation as seen in the early phases of skeletogenesis in salamander carpus and tarsus.
Collapse
Affiliation(s)
- Florian Witzmann
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Nadia Fröbisch
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Ono SF, Cordeiro IR, Kishida O, Ochi H, Tanaka M. Air-breathing behavior underlies the cell death in limbs of Rana pirica tadpoles. ZOOLOGICAL LETTERS 2023; 9:2. [PMID: 36624534 PMCID: PMC9830891 DOI: 10.1186/s40851-022-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Amphibians shape their limbs by differential outgrowth of digits and interdigital regions. In contrast, amniotes employ cell death, an additional developmental system, to determine the final shape of limbs. Previous work has shown that high oxygen availability is correlated with the induction of cell death in developing limbs. Given the diversity of life histories of amphibians, it is conceivable that some amphibians are exposed to a high-oxygen environment during the tadpole phase and exhibit cell death in their limbs. Here, we examined whether air-breathing behavior underlies the cell death in limbs of aquatic tadpoles of the frog species Rana pirica. Our experimental approach revealed that R. pirica tadpoles exhibit cell death in their limbs that is likely to be induced by oxidative stress associated with their frequent air-breathing behavior.
Collapse
Affiliation(s)
- Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido, 053-0035, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
4
|
Jia J, Anderson JS, Jiang JP, Wu W, Shubin NH, Gao KQ. Ossification patterns of the carpus and tarsus in salamanders and impacts of preaxial dominance on the fin-to-limb transition. SCIENCE ADVANCES 2022; 8:eabq7669. [PMID: 36240271 PMCID: PMC9565805 DOI: 10.1126/sciadv.abq7669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Early limb skeletogenesis in salamanders is characterized by preaxial elements, digits I and II forming earlier than their postaxial counterparts (digits III to V), a phenomenon known as preaxial dominance, whereas in amniotes and anurans, these developmental sequences are reversed. This pattern characterizes the late skeletogenesis of digits and zeugopodium of anamniote tetrapods but remains unknown in carpals/tarsals. To correct this gap in knowledge, we investigate the ossification patterns of the carpals/tarsals in six salamander families/clades based on micro-computed tomography scans. We found that preaxial dominance is seen in the distal carpals/tarsals of several salamander clades and diverse early tetrapods, such as temnospondyls and amniotes. This distribution suggests that preaxial dominance is a primitive developmental pattern in tetrapods. Our results demonstrate that the distal carpals/tarsals are developmentally and evolutionarily independent in the autopodium, and preaxial dominance facilitates stabilization of the number of distal carpals/tarsals during fin-to-limb transition and digit reduction in early tetrapods.
Collapse
Affiliation(s)
- Jia Jia
- School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 1N4, Canada
- State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS), 39 East Beijing Road, Nanjing, Jiangsu Province 210008, China
| | - Jason S. Anderson
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 1N4, Canada
| | - Jian-Ping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan Province 610041, China
| | - Wenhao Wu
- Research Center of Palaeontology and Stratigraphy, College of Earth Sciences, Jilin University, Changchun, Jilin Province 130061, China
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, Biological Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ke-Qin Gao
- School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
5
|
Ponssa ML, Fratani J, Barrionuevo JS. Phalanx morphology in salamanders: A reflection of microhabitat use, life cycle or evolutionary constraints? ZOOLOGY 2022; 154:126040. [DOI: 10.1016/j.zool.2022.126040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
6
|
Abstract
SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.
Collapse
|
7
|
Newman SA, Bhat R, Glimm T. Spatial waves and temporal oscillations in vertebrate limb development. Biosystems 2021; 208:104502. [PMID: 34364929 DOI: 10.1016/j.biosystems.2021.104502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The mesenchymal tissue of the developing vertebrate limb bud is an excitable medium that sustains both spatial and temporal periodic phenomena. The first of these is the outcome of general Turing-type reaction-diffusion dynamics that generate spatial standing waves of cell condensations. These condensations are transformed into the nodules and rods of the cartilaginous, and eventually (in most species) the bony, endoskeleton. In the second, temporal periodicity results from intracellular regulatory dynamics that generate oscillations in the expression of one or more gene whose products modulate the spatial patterning system. Here we review experimental evidence from the chicken embryo, interpreted by a set of mathematical and computational models, that the spatial wave-forming system is based on two glycan-binding proteins, galectin-1A and galectin-8 in interaction with each other and the cells that produce them, and that the temporal oscillation occurs in the expression of the transcriptional coregulator Hes1. The multicellular synchronization of the Hes1 oscillation across the limb bud serves to coordinate the biochemical states of the mesenchymal cells globally, thereby refining and sharpening the spatial pattern. Significantly, the wave-forming reaction-diffusion-based mechanism itself, unlike most Turing-type systems, does not contain an oscillatory core, and may have evolved to this condition as it came to incorporate the cell-matrix adhesion module that enabled its pattern-forming capability.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University Bellingham, WA, 98229, USA
| |
Collapse
|
8
|
Dwaraka VB, Voss SR. Towards comparative analyses of salamander limb regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:129-144. [PMID: 31584252 PMCID: PMC8908358 DOI: 10.1002/jez.b.22902] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 08/29/2023]
Abstract
Among tetrapods, only salamanders can regenerate their limbs and tails throughout life. This amazing regenerative ability has attracted the attention of scientists for hundreds of years. Now that large, salamander genomes are beginning to be sequenced for the first time, omics tools and approaches can be used to integrate new perspectives into the study of tissue regeneration. Here we argue the need to move beyond the primary salamander models to investigate regeneration in other species. Salamanders at first glance come across as a phylogenetically conservative group that has not diverged greatly from their ancestors. While salamanders do present ancestral characteristics of basal tetrapods, including the ability to regenerate limbs, data from fossils and data from studies that have tested for species differences suggest there may be considerable variation in how salamanders develop and regenerate their limbs. We review the case for expanded studies of salamander tissue regeneration and identify questions and approaches that are most likely to reveal commonalities and differences in regeneration among species. We also address challenges that confront such an initiative, some of which are regulatory and not scientific. The time is right to gain evolutionary perspective about mechanisms of tissue regeneration from comparative studies of salamander species.
Collapse
Affiliation(s)
- Varun B. Dwaraka
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
9
|
Ponssa ML, Abdala V. Sesamoids in Caudata and Gymnophiona (Lissamphibia): absences and evidence. PeerJ 2021; 8:e10595. [PMID: 33384907 PMCID: PMC7751427 DOI: 10.7717/peerj.10595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022] Open
Abstract
An integrative definition of sesamoid bones has been recently proposed, highlighting their relationship with tendons and ligaments, their genetic origin, the influence of epigenetic stimuli on their development, and their variable tissue composition. Sesamoid bones occur mainly associated with a large number of mobile joints in vertebrates, most commonly in the postcranium. Here, we present a survey of the distribution pattern of sesamoids in 256 taxa of Caudata and Gymnophiona and 24 taxa of temnospondyls and lepospondyls, based on dissections, high-resolution X-ray computed tomography from digital databases and literature data. These groups have a pivotal role in the interpretation of the evolution of sesamoids in Lissamphibia and tetrapods in general. Our main goals were: (1) to contribute to the knowledge of the comparative anatomy of sesamoids in Lissamphibia; (2) to assess the evolutionary history of selected sesamoids. We formally studied the evolution of the observed sesamoids by optimizing them in the most accepted phylogeny of the group. We identified only three bony or cartilaginous sesamoids in Caudata: the mandibular sesamoid, which is adjacent to the jaw articulation; one located on the mandibular symphysis; and one located in the posterior end of the maxilla. We did not observe any cartilaginous or osseous sesamoid in Gymnophiona. Mapping analyses of the sesamoid dataset of urodeles onto the phylogeny revealed that the very conspicuous sesamoid in the mandibular symphysis of Necturus beyeri and Amphiuma tridactylum is an independent acquisition of these taxa. On the contrary, the sesamoid located between the maxilla and the lower jaw is a new synapomorphy that supports the node of Hydromantes platycephalus and Karsenia coreana. The absence of a mandibular sesamoid is plesiomorphic to Caudata, whereas it is convergent in seven different families. The absence of postcranial sesamoids in salamanders might reveal a paedomorphic pattern that would be visible in their limb joints.
Collapse
Affiliation(s)
- María Laura Ponssa
- Área Herpetología, Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical (IBN), UNT-CONICET. Cátedra de Biología General, Facultad de Ciencias Naturales e IML, UNT, Yerba Buena, Tucuman, Argentina
| |
Collapse
|
10
|
Montero JA, Lorda-Diez CI, Sanchez-Fernandez C, Hurle JM. Cell death in the developing vertebrate limb: A locally regulated mechanism contributing to musculoskeletal tissue morphogenesis and differentiation. Dev Dyn 2020; 250:1236-1247. [PMID: 32798262 PMCID: PMC8451844 DOI: 10.1002/dvdy.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate. We examine the functions of cell death in the formation and growth of the limb primordia. We analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process and the absence of defined genetic program in their regulation we propose that cell death is a consequence of the tissue building strategy employed by the embryo regulated by epigenetic factors .
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | | | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
11
|
Cordeiro IR, Tanaka M. Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. Bioessays 2020; 42:e2000025. [DOI: 10.1002/bies.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| |
Collapse
|
12
|
Purushothaman S, Elewa A, Seifert AW. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. eLife 2019; 8:48507. [PMID: 31538936 PMCID: PMC6754229 DOI: 10.7554/elife.48507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Although decades of studies have produced a generalized model for tetrapod limb development, urodeles deviate from anurans and amniotes in at least two key respects: their limbs exhibit preaxial skeletal differentiation and do not develop an apical ectodermal ridge (AER). Here, we investigated how Sonic hedgehog (Shh) and Fibroblast growth factor (Fgf) signaling regulate limb development in the axolotl. We found that Shh-expressing cells contributed to the most posterior digit, and that inhibiting Shh-signaling inhibited Fgf8 expression, anteroposterior patterning, and distal cell proliferation. In addition to lack of a morphological AER, we found that salamander limbs also lack a molecular AER. We found that amniote and anuran AER-specific Fgfs and their cognate receptors were expressed entirely in the mesenchyme. Broad inhibition of Fgf-signaling demonstrated that this pathway regulates cell proliferation across all three limb axes, in contrast to anurans and amniotes where Fgf-signaling regulates cell survival and proximodistal patterning. Salamanders are a group of amphibians that are well-known for their ability to regenerate lost limbs and other body parts. At the turn of the twentieth century, researchers used salamander embryos as models to understand the basic concepts of how limbs develop in other four-limbed animals, including amphibians, mammals and birds, which are collectively known as “tetrapods”. However, the salamander’s amazing powers of regeneration made it difficult to carry out certain experiments, so researchers switched to using the embryos of other tetrapods – namely chickens and mice – instead. Studies in chickens, later confirmed in mice and frogs, established that there are two major signaling centers that control how the limbs of tetrapod embryos form and grow: a small group of cells known as the “zone of polarizing activity” within a structure called the “limb bud mesenchyme”; and an overlying, thin ridge of cells called the “apical ectodermal ridge”. Both of these centers release potent signaling molecules that act on cells in the limbs. The cells in the zone of polarizing activity produce a molecule often called Sonic hedgehog, or Shh for short. The apical ectodermal ridge produces another group of signals commonly known as fibroblast growth factors, or simply Fgfs. Several older studies reported that salamander embryos do not have an apical ectodermal ridge suggesting that these amphibian’s limbs may form differently to other tetrapods. Yet, contemporary models in developmental biology treated salamander limbs like those of chicks and mice. To address this apparent discrepancy, Purushothaman et al. studied how the forelimbs develop in a salamander known as the axolotl. The experiments showed that, along with lacking an apical ectodermal ridge, axolotls did not produce fibroblast growth factors normally found in this tissue. Instead, these factors were only found in the limb bud mesenchyme. Purushothaman et al. also found that fibroblast growth factors played a different role in axolotls than previously reported in chick, frog and mouse embryos. On the other hand, the pattern and function of Shh activity in the axolotl limb bud was similar to that previously observed in chicks and mice. These findings show that not all limbs develop in the same way and open up questions for evolutionary biologists regarding the evolution of limbs. Future studies that examine limb development in other animals that regenerate tissues, such as other amphibians and lungfish, will help answer these questions.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, United States
| |
Collapse
|
13
|
Cordeiro IR, Kabashima K, Ochi H, Munakata K, Nishimori C, Laslo M, Hanken J, Tanaka M. Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning. Dev Cell 2019; 50:155-166.e4. [PMID: 31204171 DOI: 10.1016/j.devcel.2019.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 01/04/2023]
Abstract
Amphibians form fingers without webbing by differential growth between digital and interdigital regions. Amniotes, however, employ interdigital cell death (ICD), an additional mechanism that contributes to a greater variation of limb shapes. Here, we investigate the role of environmental oxygen in the evolution of ICD in tetrapods. While cell death is restricted to the limb margin in amphibians with aquatic tadpoles, Eleutherodactylus coqui, a frog with terrestrial-direct-developing eggs, has cell death in the interdigital region. Chicken requires sufficient oxygen and reactive oxygen species to induce cell death, with the oxygen tension profile itself being distinct between the limbs of chicken and Xenopus laevis frogs. Notably, increasing blood vessel density in X. laevis limbs, as well as incubating tadpoles under high oxygen levels, induces ICD. We propose that the oxygen available to terrestrial eggs was an ecological feature crucial for the evolution of ICD, made possible by conserved autopod-patterning mechanisms.
Collapse
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kaori Kabashima
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Keijiro Munakata
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Chika Nishimori
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
14
|
Bickelmann C, Frota-Lima GN, Triepel SK, Kawaguchi A, Schneider I, Fröbisch NB. Noncanonical Hox, Etv4, and Gli3 gene activities give insight into unique limb patterning in salamanders. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:138-147. [PMID: 29602205 DOI: 10.1002/jez.b.22798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
Abstract
Limb development in salamanders is unique among tetrapods in significant ways. Not only can salamanders regenerate lost limbs repeatedly and throughout their lives, but also the preaxial zeugopodial element and digits form before the postaxial ones and, hence, with a reversed polarity compared to all other tetrapods. Moreover, in salamanders with free-swimming larval stages, as exemplified by the axolotl (Ambystoma mexicanum), each digit buds independently, instead of undergoing a paddle stage. Here, we report gene expression patterns of Hoxa and d clusters, and other crucial transcription factors during axolotl limb development. During early phases of limb development, expression patterns are mostly similar to those reported for amniotes and frogs. Likewise, Hoxd and Shh regulatory landscapes are largely conserved. However, during late digit-budding phases, remarkable differences are present: (i) the Hoxd13 expression domain excludes developing digits I and IV, (ii) we expand upon previous observation that Hoxa11 expression, which traditionally marks the zeugopodium, extends distally into the developing digits, and (iii) Gli3 and Etv4 show prolonged expression in developing digits. Our findings identify derived patterns in the expression of key transcription factors during late phases of salamander limb development, and provide the basis for a better understanding of the unique patterning of salamander limbs.
Collapse
Affiliation(s)
- Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Gabriela Neiva Frota-Lima
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Sandra Karla Triepel
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna, Austria
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nadia Belinda Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Kerney RR, Hanken J, Blackburn DC. Early limb patterning in the direct-developing salamander Plethodon cinereus revealed by sox9 and col2a1. Evol Dev 2018. [PMID: 29527799 DOI: 10.1111/ede.12250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct-developing amphibians form limbs during early embryonic stages, as opposed to the later, often postembryonic limb formation of metamorphosing species. Limb patterning is dramatically altered in direct-developing frogs, but little attention has been given to direct-developing salamanders. We use expression patterns of two genes, sox9 and col2a1, to assess skeletal patterning during embryonic limb development in the direct-developing salamander Plethodon cinereus. Limb patterning in P. cinereus partially resembles that described in other urodele species, with early formation of digit II and a generally anterior-to-posterior formation of preaxial digits. Unlike other salamanders described to date, differentiation of preaxial zeugopodial cartilages (radius/tibia) is not accelerated in relation to the postaxial cartilages, and there is no early differentiation of autopodial elements in relation to more proximal cartilages. Instead, digit II forms in continuity with the ulnar/fibular arch. This amniote-like connectivity to the first digit that forms may be a consequence of the embryonic formation of limbs in this direct-developing species. Additionally, and contrary to recent models of amphibian digit identity, there is no evidence of vestigial digits. This is the first account of gene expression in a plethodontid salamander and only the second published account of embryonic limb patterning in a direct-developing salamander species.
Collapse
Affiliation(s)
- Ryan R Kerney
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania
| | - James Hanken
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts
| | - David C Blackburn
- Florida Museum of Natural History, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Newman SA, Glimm T, Bhat R. The vertebrate limb: An evolving complex of self-organizing systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:12-24. [PMID: 29325895 DOI: 10.1016/j.pbiomolbio.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/28/2022]
Abstract
The paired appendages (fins or limbs) of jawed vertebrates contain an endoskeleton consisting of nodules, bars and, in some groups, plates of cartilage, or bone arising from replacement of cartilaginous templates. The generation of the endoskeletal elements occurs by processes involving production and diffusion of morphogens, with, variously, positive and negative feedback circuits, adhesion, and receptor dynamics with similarities to the mechanism for chemical pattern formation proposed by Alan Turing. This review presents a unified interpretation of the evolution and functioning of these mechanisms. Studies are described indicating that protocondensations, compacted mesenchymal cell aggregates that prefigure the appendicular skeleton, arise through the adhesive activity of galectin-1, a matricellular protein with skeletogenic homologs in all jawed vertebrates. In the cartilaginous and lobe-finned fishes (and to a variable extent in ray-finned fishes) it additionally cooperates with an isoform of galectin-8 to constitute a self-organizing network capable of generating arrays of preskeletal nodules, bars and plates. Further, in the tetrapods, a putative galectin-8 control module was acquired that may have enabled proximodistal increase in the number of protocondensations. In parallel to this, other self-organizing networks emerged that acted, via Bmp, Wnt, Sox9 and Runx2, as well as transforming factor-β and fibronectin, to convert protocondensations into skeletal tissues. The progressive appearance and integration of these skeletogenic networks over evolution occurred in the context of an independently evolved system of Hox protein and Shh gradients that interfaced with them to tune the spatial wavelengths and refine the identities of the resulting arrays of elements.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, 98229, USA
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
17
|
Kumar A, Gates PB, Czarkwiani A, Brockes JP. An orphan gene is necessary for preaxial digit formation during salamander limb development. Nat Commun 2015; 6:8684. [PMID: 26498026 PMCID: PMC4918474 DOI: 10.1038/ncomms9684] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022] Open
Abstract
Limb development in salamanders differs from other tetrapods in that the first digits to form are the two most anterior (preaxial dominance). This has been proposed as a salamander novelty and its mechanistic basis is unknown. Salamanders are the only adult tetrapods able to regenerate the limb, and the contribution of preaxial dominance to limb regeneration is unclear. Here we show that during early outgrowth of the limb bud, a small cohort of cells express the orphan gene Prod1 together with Bmp2, a critical player in digit condensation in amniotes. Disruption of Prod1 with a gene-editing nuclease abrogates these cells, and blocks formation of the radius and ulna, and outgrowth of the anterior digits. Preaxial dominance is a notable feature of limb regeneration in the larval newt, but this changes abruptly after metamorphosis so that the formation of anterior and posterior digits occurs together within the autopodium resembling an amniote-like pattern.
Collapse
Affiliation(s)
- Anoop Kumar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Phillip B. Gates
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Jeremy P. Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
18
|
Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum. Mech Dev 2015; 136:99-110. [PMID: 25617760 DOI: 10.1016/j.mod.2014.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/30/2014] [Accepted: 12/31/2014] [Indexed: 11/22/2022]
Abstract
We present a complete staging table of normal development for the lungless salamander, Hemidactylium scutatum (Caudata: Plethodontidae). Terrestrial egg clutches from naturally ovipositing females were collected and maintained at 15 °C in the laboratory. Observations, photographs, and time-lapse movies of embryos were taken throughout the 45-day embryonic period. The complete normal table of development for H. scutatum is divided into 28 stages and extends previous analyses of H. scutatum embryonic development (Bishop, 1920; Humphrey, 1928). Early embryonic stage classifications through neurulation reflect criteria described for Xenopus laevis, Ambystoma maculatum and other salamanders. Later embryonic stage assignments are based on unique features of H. scutatum embryos. Additionally, we provide morphological analysis of gastrulation and neurulation, as well as details on external aspects of eye, gill, limb, pigmentation, and tail development to support future research related to phylogeny, comparative embryology, and molecular mechanisms of development.
Collapse
|
19
|
Abstract
Regeneration is studied in a few model species of salamanders, but the ten families of salamanders show considerable variation, and this has implications for our understanding of salamander biology. The most recent classification of the families identifies the cryptobranchoidea as the basal group which diverged in the early Jurassic. Variation in the sizes of genomes is particularly obvious, and reflects a major contribution from transposable elements which is already present in the basal group.Limb development has been a focus for evodevo studies, in part because of the variable property of pre-axial dominance which distinguishes salamanders from other tetrapods. This is thought to reflect the selective pressures that operate on a free-living aquatic larva, and might also be relevant for the evolution of limb regeneration. Recent fossil evidence suggests that both pre-axial dominance and limb regeneration were present 300 million years ago in larval temnospondyl amphibians that lived in mountain lakes. A satisfying account of regeneration in salamanders may need to address all these different aspects in the future.
Collapse
|
20
|
Nath K, Fisher C, Elinson RP. Expression of cyclin D1, cyclin D2, and N-myc in embryos of the direct developing frog Eleutherodactylus coqui, with a focus on limbs. Gene Expr Patterns 2013; 13:142-9. [PMID: 23473789 PMCID: PMC3657300 DOI: 10.1016/j.gep.2013.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 11/16/2022]
Abstract
Species of frogs that develop directly have removed the tadpole from their ontogeny and form adult structures precociously. To see whether cell cycle regulators could be involved in this altered embryogenesis, we examined the expression of ccnd1, ccnd2, and mycn in embryos of the direct developing frog, Eleutherodactylus coqui. Notable differences compared to embryos of Xenopus laevis, a species with a tadpole, included prominent expression of ccnd2 in the midbrain and ccnd1 in the mandibular neural crest. The former may contribute to the precocious appearance of the adult-type visual system and the latter to the adult-type jaw. Large domains of ccnd2 and mycn presage the early appearance of limb buds, and ccnd1 and mycn are implicated in digit development.
Collapse
Affiliation(s)
- Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| | - Cara Fisher
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| | - Richard P. Elinson
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| |
Collapse
|
21
|
Diogo R, Linde-Medina M, Abdala V, Ashley-Ross MA. New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biol Rev Camb Philos Soc 2012; 88:196-214. [DOI: 10.1111/j.1469-185x.2012.00247.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kerney R. Embryonic Staging Table for a Direct-Developing Salamander, Plethodon cinereus (Plethodontidae). Anat Rec (Hoboken) 2011; 294:1796-808. [DOI: 10.1002/ar.21480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/02/2011] [Indexed: 11/10/2022]
|
23
|
Fröbisch NB, Shubin NH. Salamander limb development: integrating genes, morphology, and fossils. Dev Dyn 2011; 240:1087-99. [PMID: 21465623 DOI: 10.1002/dvdy.22629] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2011] [Indexed: 11/11/2022] Open
Abstract
The development of the tetrapod limb during skeletogenesis follows a highly conservative pattern characterized by a general proximo-distal progression in the establishment of skeletal elements and a postaxial polarity in digit development. Salamanders represent the only exception to this pattern and display an early establishment of distal autopodial structures, specifically the basale commune, an amalgamation of distal carpal and tarsal 1 and 2, and a distinct preaxial polarity in digit development. This deviance from the conserved tetrapod pattern has resulted in a number of hypotheses to explain its developmental basis and evolutionary history. Here we summarize the current knowledge of salamander limb development under consideration of the fossil record to provide a deep time perspective of this evolutionary pathway and highlight what data will be needed in the future to gain a better understanding of salamander limb development specifically and tetrapod limb development and evolution more broadly.
Collapse
Affiliation(s)
- Nadia B Fröbisch
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
24
|
Kerney R, Gross JB, Hanken J. Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression. Evol Dev 2010; 12:373-82. [PMID: 20618433 DOI: 10.1111/j.1525-142x.2010.00424.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic and developmental alterations associated with the evolution of amphibian direct development remain largely unexplored. Specifically, little is known of the underlying expression of skeletal regulatory genes, which may reveal early modifications to cranial ontogeny in direct-developing species. We describe expression patterns of three key skeletal regulators (runx2, sox9, and bmp4) along with the cartilage-dominant collagen 2alpha1 gene (col2a1) during cranial development in the direct-developing anuran, Eleutherodactylus coqui. Expression patterns of these regulators reveal transient skeletogenic anlagen that correspond to larval cartilages, but which never fully form in E. coqui. Suprarostral anlagen in the frontonasal processes are detected through runx2, sox9, and bmp4 expression. Previous studies have described these cartilages as missing from Eleutherodactylus cranial ontogeny. These transcriptionally active suprarostral anlagen fuse to the more posterior cranial trabeculae before they are detectable with col2a1 staining or with the staining techniques used in earlier studies. Additionally, expression of sox9 fails to reveal an early anterior connection between the palatoquadrate and the neurocranium, which is detectable through sox9 staining in Xenopus laevis embryos (a metamorphosing species). Absence of this connection validates an instance of developmental repatterning, where the larval quadratocranial commissure cartilage is lost in E. coqui. Expression of runx2 reveals dermal-bone precursors several developmental stages before their detection with alizarin red. This early expression of runx2 correlates with the accelerated embryonic onset of bone formation characteristic of E. coqui and other direct-developing anurans, but which differs from the postembryonic bone formation of most metamorphosing species. Together these results provide an earlier depiction of cranial patterning in E. coqui by using earlier markers of skeletogenic cell differentiation. These data both validate and modify previously reported instances of larval recapitulation and developmental repatterning associated with the evolution of anuran direct development.
Collapse
Affiliation(s)
- Ryan Kerney
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS, Canada B3H 4J1.
| | | | | |
Collapse
|
25
|
Zhu J, Zhang YT, Alber MS, Newman SA. Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One 2010; 5:e10892. [PMID: 20531940 PMCID: PMC2878345 DOI: 10.1371/journal.pone.0010892] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D) and anteroposterior (A-P) axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis) indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI) properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF) emanating from the apical ectodermal ridge (AER). RESULTS We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model's parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. CONCLUSIONS The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early forms, with no requirement for an independent system of positional information.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yong-Tao Zhang
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark S. Alber
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
26
|
Abstract
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.
Collapse
|
27
|
Guimond JC, Lévesque M, Michaud PL, Berdugo J, Finnson K, Philip A, Roy S. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC DEVELOPMENTAL BIOLOGY 2010; 10:15. [PMID: 20152028 PMCID: PMC2829471 DOI: 10.1186/1471-213x-10-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 02/12/2010] [Indexed: 11/20/2022]
Abstract
Background Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas) in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration. Results The expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration) but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor) in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division. Conclusion The expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has described in other tetrapods. Overexpression of BMP-2 did not cause the formation of extra digits, which is consistent with the hypothesis that it is not the secondary signal of sonic hedgehog. However, it did cause the formation of hypomorphic limbs as a result of increased cellular condensation and apoptosis. Taken together, these results suggest that BMP-2 does not have a direct role in patterning regenerating limbs but may be important to trigger condensation prior to ossification and to mediate apoptosis.
Collapse
Affiliation(s)
- Jean-Charles Guimond
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal (QC) Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Richardson MK, Gobes SM, van Leeuwen AC, Polman JA, Pieau C, Sánchez-Villagra MR. Heterochrony in limb evolution: developmental mechanisms and natural selection. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:639-64. [DOI: 10.1002/jez.b.21250] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Vorobyeva EI. Morphogenetic approach to the formation of paired limbs in the course of tetrapodization. BIOL BULL+ 2009. [DOI: 10.1134/s106235900902006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Fröbisch NB. Ossification patterns in the tetrapod limb - conservation and divergence from morphogenetic events. Biol Rev Camb Philos Soc 2008; 83:571-600. [DOI: 10.1111/j.1469-185x.2008.00055.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Newman SA, Bhat R. Activator-inhibitor dynamics of vertebrate limb pattern formation. ACTA ACUST UNITED AC 2008; 81:305-19. [PMID: 18228262 DOI: 10.1002/bdrc.20112] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the vertebrate limb depends on an interplay of cellular differentiation, pattern formation, and tissue morphogenesis on multiple spatial and temporal scales. While numerous gene products have been described that participate in, and influence, the generation of the limb skeletal pattern, an understanding of the most salient feature of the developing limb--its quasiperiodic arrangement of bones, requires additional organizational principles. We review several such principles, drawing on concepts of physics and chemical dynamics along with molecular genetics and cell biology. First, a "core mechanism" for precartilage mesenchymal condensation is described, based on positive autoregulation of the morphogen transforming growth factor (TGF)-beta, induction of the extracellular matrix (ECM) protein fibronectin, and focal accumulation of cells via haptotaxis. This core mechanism is shown to be part of a local autoactivation-lateral inhibition (LALI) system that ensures that the condensations will be regularly spaced. Next, a "bare-bones" model for limb development is described in which the LALI-core mechanism is placed in a growing geometric framework with predifferentiated "apical," differentiating "active," and irreversibly differentiated "frozen" zones defined by distance from an apical source of a fibroblast growth factor (FGF)-type morphogen. This model is shown to account for classic features of the developing limb, including the proximodistal (PD) emergence over time of increasing numbers of bones. We review earlier and recent work suggesting that the inhibitory component of the LALI system for condensation may not be a diffusible morphogen, and propose an alternative mechanism for lateral inhibition, based on synchronization of oscillations of a Hes mediator of the Notch signaling pathway. Finally, we discuss how viewing development as an interplay between molecular-genetic and dynamic physical processes can provide new insight into the origin of congenital anomalies.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
32
|
GOLDBERG JAVIER, FABREZI MARISSA. Development and variation of the anuran webbed feet (Amphibia, Anura). Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.2007.00345.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Newman SA, Christley S, Glimm T, Hentschel HGE, Kazmierczak B, Zhang YT, Zhu J, Alber M. Multiscale models for vertebrate limb development. Curr Top Dev Biol 2008; 81:311-40. [PMID: 18023733 DOI: 10.1016/s0070-2153(07)81011-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamical systems in which geometrically extended model cells produce and interact with diffusible (morphogen) and nondiffusible (extracellular matrix) chemical fields have proved very useful as models for developmental processes. The embryonic vertebrate limb is an apt system for such mathematical and computational modeling since it has been the subject of hundreds of experimental studies, and its normal and variant morphologies and spatiotemporal organization of expressed genes are well known. Because of its stereotypical proximodistally generated increase in the number of parallel skeletal elements, the limb lends itself to being modeled by Turing-type systems which are capable of producing periodic, or quasiperiodic, arrangements of spot- and stripe-like elements. This chapter describes several such models, including, (i) a system of partial differential equations in which changing cell density enters into the dynamics explicitly, (ii) a model for morphogen dynamics alone, derived from the latter system in the "morphostatic limit" where cell movement relaxes on a much slower time-scale than cell differentiation, (iii) a discrete stochastic model for the simplified pattern formation that occurs when limb cells are placed in planar culture, and (iv) several hybrid models in which continuum morphogen systems interact with cells represented as energy-minimizing mesoscopic entities. Progress in devising computational methods for handling 3D, multiscale, multimodel simulations of organogenesis is discussed, as well as for simulating reaction-diffusion dynamics in domains of irregular shape.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shearman RM. Chondrogenesis and ossification of the lissamphibian pectoral girdle. J Morphol 2007; 269:479-95. [DOI: 10.1002/jmor.10597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Vorobyeva EI, Mednikov DN. The order of ossification of skeletal elements in the legs of Ranodon sibiricus Kessler (Hynobiidae, Caudata). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2007; 417:449-452. [PMID: 18274488 DOI: 10.1134/s0012496607060117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- E I Vorobyeva
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia
| | | |
Collapse
|
36
|
Alber M, Glimm T, Hentschel HGE, Kazmierczak B, Zhang YT, Zhu J, Newman SA. The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb. Bull Math Biol 2007; 70:460-83. [DOI: 10.1007/s11538-007-9264-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
|
37
|
Hutchison C, Pilote M, Roy S. The axolotl limb: a model for bone development, regeneration and fracture healing. Bone 2007; 40:45-56. [PMID: 16920050 DOI: 10.1016/j.bone.2006.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 11/18/2022]
Abstract
Among vertebrates, urodele amphibians (e.g., axolotls) have the unique ability to perfectly regenerate complex body parts after amputation. The limb has been the most widely studied due to the presence of three defined axes and its ease of manipulation. Hence, the limb has been chosen as a model to study the process of skeletogenesis during axolotl development, regeneration and to analyze this animal's ability to heal bone fractures. Extensive studies have allowed researchers to gain some knowledge of the mechanisms controlling growth and pattern formation in regenerating and developing limbs, offering an insight into how vertebrates are able to regenerate tissues. In this study, we report the cloning and characterization of two axolotl genes; Cbfa-1, a transcription factor that controls the remodeling of cartilage into bone and PTHrP, known for its involvement in the differentiation and maturation of chondrocytes. Whole-mount in situ hybridization and immunohistochemistry results show that Cbfa-1, PTHrP and type II collagen are expressed during limb development and regeneration. These genes are expressed during specific stages of limb development and regeneration which are consistent with the appearance of skeletal elements. The expression pattern for Cbfa-1 in late limb development was similar to the expression pattern found in the late stages of limb regeneration (i.e. re-development phase) and it did not overlap with the expression of type II collagen. It has been reported that the molecular mechanisms involved in the re-development phase of limb regeneration are a recapitulation of those used in developing limbs; therefore the detection of Cbfa-1 expression during regeneration supports this assertion. Conversely, PTHrP expression pattern was different during limb development and regeneration, by its intensity and by the localization of the signal. Finally, despite its unsurpassed abilities to regenerate, we tested whether the axolotl was able to regenerate non-union bone fractures. We show that while the axolotl is able to heal a non-stabilized union fracture, like other vertebrates, it is incapable of healing a bone gap of critical dimension. These results suggest that the axolotl does not use the regeneration process to repair bone fractures.
Collapse
Affiliation(s)
- Cara Hutchison
- Department of Biochemistry, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
38
|
Johanson Z, Joss J, Boisvert CA, Ericsson R, Sutija M, Ahlberg PE. Fish fingers: digit homologues in sarcopterygian fish fins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:757-68. [PMID: 17849442 DOI: 10.1002/jez.b.21197] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A defining feature of tetrapod evolutionary origins is the transition from fish fins to tetrapod limbs. A major change during this transition is the appearance of the autopod (hands, feet), which comprises two distinct regions, the wrist/ankle and the digits. When the autopod first appeared in Late Devonian fossil tetrapods, it was incomplete: digits evolved before the full complement of wrist/ankle bones. Early tetrapod wrists/ankles, including those with a full complement of bones, also show a sharp pattern discontinuity between proximal elements and distal elements. This suggests the presence of a discontinuity in the proximal-distal sequence of development. Such a discontinuity occurs in living urodeles, where digits form before completion of the wrist/ankle, implying developmental independence of the digits from wrist/ankle elements. We have observed comparable independent development of pectoral fin radials in the lungfish Neoceratodus (Osteichthyes: Sarcopterygii), relative to homologues of the tetrapod limb and proximal wrist elements in the main fin axis. Moreover, in the Neoceratodus fin, expression of Hoxd13 closely matches late expression patterns observed in the tetrapod autopod. This evidence suggests that Neoceratodus fin radials and tetrapod digits may be patterned by shared mechanisms distinct from those patterning the proximal fin/limb elements, and in that sense are homologous. The presence of independently developing radials in the distal part of the pectoral (and pelvic) fin may be a general feature of the Sarcopterygii.
Collapse
Affiliation(s)
- Zerina Johanson
- Department of Palaeontology, Natural History Museum, London UK SW7 5BD.
| | | | | | | | | | | |
Collapse
|
39
|
Fernández-Terán MA, Hinchliffe JR, Ros MA. Birth and death of cells in limb development: A mapping study. Dev Dyn 2006; 235:2521-37. [PMID: 16881063 DOI: 10.1002/dvdy.20916] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell death and cell proliferation are basic cellular processes that need to be precisely controlled during embryonic development. The developing vertebrate limb illustrates particularly well how correct morphogenesis depends on the appropriate spatial and temporal balance between cell death and cell proliferation. Precise knowledge of the patterns of cell proliferation and cell death during limb development is required to understand how their modifications may contribute to the generation of the great diversity of limb phenotypes that result from spontaneous mutations or induced genetic manipulations. We have performed a comprehensive analysis of the patterns of cell death, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL), and cell proliferation, assayed by anti-phosphorylated histone H3 immunohistochemistry, in consecutive sections of forelimbs and hindlimbs covering an extensive period of chick and mouse limb development. Our results confirm and expand previous reports and show common and specific areas of cell death for each species. Mitotic cells were found scattered in a uniform distribution across the early limb bud, with the exception of the areas of cell death in which mitotic cells were scarce. At later stages, mitotic cells were seen more abundantly in the digital tips. The aim of the present study was to satisfy the need for organized data sets describing these processes, which will allow the side-by-side comparison between the two major model organisms of limb development, i.e., the mouse and the chick.
Collapse
Affiliation(s)
- M A Fernández-Terán
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
40
|
Newman SA, Müller GB. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:593-609. [PMID: 16161064 DOI: 10.1002/jez.b.21066] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vertebrate limb has provided evolutionary and developmental biologists with grist for theory and experiment for at least a century. Its most salient features are its pattern of discrete skeletal elements, the general proximodistal increase in element number as development proceeds, and the individualization of size and shape of the elements in line with functional requirements. Despite increased knowledge of molecular changes during limb development, however, the mechanisms for origination and innovation of the vertebrate limb pattern are still uncertain. We suggest that the bauplan of the limb is based on an interplay of genetic and epigenetic processes; in particular, the self-organizing properties of precartilage mesenchymal tissue are proposed to provide the basis for its ability to generate regularly spaced nodules and rods of cartilage. We provide an experimentally based "core" set of cellular and molecular processes in limb mesenchyme that, under realistic conditions, exhibit the requisite self-organizing behavior for pattern origination. We describe simulations that show that under limb bud-like geometries the core mechanism gives rise to skeletons with authentic proximodistal spatiotemporal organization. Finally, we propose that evolution refines skeletal templates generated by this process by mobilizing accessory molecular and biomechanical regulatory processes to shape the developing limb and its individual elements. Morphological innovation may take place when such modulatory processes exceed a threshold defined by the dynamics of the skeletogenic system and elements are added or lost.
Collapse
|