1
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
2
|
Nommick A, Boutin C, Rosnet O, Schirmer C, Bazellières E, Thomé V, Loiseau E, Viallat A, Kodjabachian L. Lrrcc1 and Ccdc61 are conserved effectors of multiciliated cell function. J Cell Sci 2022; 135:274401. [DOI: 10.1242/jcs.258960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliated epithelia perform essential functions across animal evolution, ranging from locomotion of marine organisms to mucociliary clearance of airways in mammals. These epithelia are composed of multiciliated cells (MCCs) harbouring myriads of motile cilia, which rest on modified centrioles called basal bodies (BBs), and beat coordinately to generate directed fluid flows. Thus, BB biogenesis and organization is central to MCC function. In basal eukaryotes, the coiled-coil domain proteins Lrrcc1 and Ccdc61 were shown to be required for proper BB construction and function. Here, we used the Xenopus embryonic ciliated epidermis to characterize Lrrcc1 and Ccdc61 in vertebrate MCCs. We found that they both encode BB components, localized proximally at the junction with striated rootlets. Knocking down either gene caused defects in BB docking, spacing, and polarization. Moreover, their depletion impaired the apical cytoskeleton, and altered ciliary beating. Consequently, cilia-powered fluid flow was greatly reduced in morphant tadpoles, which displayed enhanced mortality when exposed to pathogenic bacteria. This work illustrates how integration across organizational scales make elementary BB components essential for the emergence of the physiological function of ciliated epithelia.
Collapse
Affiliation(s)
- Aude Nommick
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Camille Boutin
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Olivier Rosnet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Claire Schirmer
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Elsa Bazellières
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Virginie Thomé
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Etienne Loiseau
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
3
|
Grosso J, Baldo D, Cardozo D, Kolenc F, Borteiro C, de Oliveira MIR, Bonino MF, Barrasso DA, Vera Candioti F. Early ontogeny and sequence heterochronies in Leiuperinae frogs (Anura: Leptodactylidae). PLoS One 2019; 14:e0218733. [PMID: 31246982 PMCID: PMC6597095 DOI: 10.1371/journal.pone.0218733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
The study of early development in Neotropical Leiuperinae frogs (Anura, Leptodactylidae) has been addressed by several works in recent times. However, a comparative developmental approach under a phylogenetic context was not available. Herein we analyzed the morphological and ontogenetic diversity of embryos belonging to 22 species of the three largest genera in Leiuperinae. We find that in most cases, variations fit with the phylogeny at the inter- and intrageneric levels. Embryo kyphosis and whitish color are synapomorphies for the clade grouping Physalaemus and Engystomops. The presence of a third lower tooth row on the oral disc is plesiomorphic for Leiuperinae, only changing in derived clades. The configurations and developmental trajectories of the lower lip are exceptionally diverse. The developmental sequences optimized on the phylogenetic tree recover an early differentiated first lower tooth row a synapomorphy of Pseudopaludicola and Physalaemus, and an early differentiated second row as synapomorphy of Pleurodema. On the other hand, few features are highly conserved in the subfamily, such as the adhesive glands universally present in a type-C configuration. Our results also suggest that the morphology and ontogeny of embryos is in some cases associated to the environment where they develop. A large body size, poorly developed transient respiratory structures, large yolk provision and delayed development of the digestive tract occur convergently in embryos inhabiting cold, oxygenated environments. Embryos that develop in warmer water bodies in xeric environments show more complex and persistent transient respiratory structures and an early onset of hind limbs development. Our survey highlights that morphology and early development of anurans can be a valuable source of information for phylogenetic studies, and provide fundamental bases to explore and discuss how evolutionary changes can be shaped by environmental conditions.
Collapse
Affiliation(s)
- Jimena Grosso
- Unidad Ejecutora Lillo (CONICET-FML), Tucumán, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, (IBS-CONICET), Misiones, Argentina
| | - Darío Cardozo
- Laboratorio de Genética Evolutiva, (IBS-CONICET), Misiones, Argentina
| | - Francisco Kolenc
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo, Uruguay
| | - Claudio Borteiro
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo, Uruguay
| | - Marianna I. R. de Oliveira
- Programa de Pós-Graduação em Biodiversidade e Evolução (PPGBioEvo-UFBA), Ondina, Salvador, Bahia, Brazil
| | - Marcelo F. Bonino
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos (LEBECH), INIBIOMA (CONICET-UNCo), Rio Negro, Argentina
| | - Diego A. Barrasso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Chubut, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia “San Juan Bosco” (UNPSJB), Chubut, Argentina
| | | |
Collapse
|
4
|
Varga JFA, Bui-Marinos MP, Katzenback BA. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front Immunol 2019; 9:3128. [PMID: 30692997 PMCID: PMC6339944 DOI: 10.3389/fimmu.2018.03128] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/26/2023] Open
Abstract
Amphibian skin is a mucosal surface in direct and continuous contact with a microbially diverse and laden aquatic and/or terrestrial environment. As such, frog skin is an important innate immune organ and first line of defence against pathogens in the environment. Critical to the innate immune functions of frog skin are the maintenance of physical, chemical, cellular, and microbiological barriers and the complex network of interactions that occur across all the barriers. Despite the global decline in amphibian populations, largely as a result of emerging infectious diseases, we understand little regarding the cellular and molecular mechanisms that underlie the innate immune function of amphibian skin and defence against pathogens. In this review, we discuss the structure, cell composition and cellular junctions that contribute to the skin physical barrier, the antimicrobial peptide arsenal that, in part, comprises the chemical barrier, the pattern recognition receptors involved in recognizing pathogens and initiating innate immune responses in the skin, and the contribution of commensal microbes on the skin to pathogen defence. We briefly discuss the influence of environmental abiotic factors (natural and anthropogenic) and pathogens on the immunocompetency of frog skin defences. Although some aspects of frog innate immunity, such as antimicrobial peptides are well-studied; other components and how they contribute to the skin innate immune barrier, are lacking. Elucidating the complex network of interactions occurring at the interface of the frog's external and internal environments will yield insight into the crucial role amphibian skin plays in host defence and the environmental factors leading to compromised barrier integrity, disease, and host mortality.
Collapse
Affiliation(s)
- Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
5
|
The Adhesive Glands during Embryogenesis in Some Species of Phyllomedusinae (Anura: Hylidae). J HERPETOL 2017. [DOI: 10.1670/15-127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Grosso JR, Baldo D, Vera Candioti F. Heterochronic changes during embryonic development of neotropical foam nesting frogs (genus Leptodactylus). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2016.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Candioti FV, Grosso J, Haad B, Pereyra MO, Bornschein MR, Borteiro C, Costa P, Kolenc F, Pie MR, Proaño B, Ron S, Stanescu F, Baldo D. Structural and Heterochronic Variations During the Early Ontogeny in Toads (Anura: Bufonidae). HERPETOLOGICAL MONOGRAPHS 2016. [DOI: 10.1655/herpmonographs-d-16-00004.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
de Lima AVP, Reis AH, Amado NG, Cassiano-Lima D, Borges-Nojosa DM, Oriá RB, Abreu JG. Developmental aspects of the direct-developing frog Adelophryne maranguapensis. Genesis 2016; 54:257-71. [PMID: 26953634 DOI: 10.1002/dvg.22935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/22/2016] [Accepted: 03/05/2016] [Indexed: 11/06/2022]
Abstract
Direct development in amphibians is characterized by the loss of aquatic breeding. The anuran Adelophryne maranguapensis is one example of a species with direct development, and it is endemic to the state of Ceará, Brazil. Detailed morphological features of A. maranguapensis embryos and the stages of sequential development have not been described before. Here, we analyzed all available genetic sequence tags in A. maranguapensis (tyr exon 1, pomc and rag1) and compared them with sequences from other species of Adelophryne frogs. We describe the A. maranguapensis reproductive tract and embryonic body development, with a focus on the limbs, tail, ciliated cells of the skin, and the egg tooth, which were analyzed using scanning electron microscopy. Histological analyses revealed ovaries containing oocytes surrounded by follicular cells, displaying large nuclei with nucleoli inside. Early in development, the body is unpigmented, and the neural tube forms dorsally to the yolk vesicle, typical of a direct-developing frog embryo. The hindlimbs develop earlier than the forelimbs. Ciliated cells are abundant during the early stages of skin development and are less common during later stages. The egg tooth appears in the later stages and develops as a keratinized microridge structure. The developmental profile of A. maranguapensis presented here will contribute to our understanding of the direct-development model and may help preserve this endangered native Brazilian frog. genesis 54:257-271, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana V P de Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil.,Faculdade de Medicina, Universidade de Fortaleza, UNIFOR, CE, Brazil
| | - Alice H Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Nathália G Amado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - Diva M Borges-Nojosa
- Núcleo Regional de Ofiologia da UFC, Depto. Biologia, Universidade Federal do Ceará, CE, Brazil
| | - Reinaldo B Oriá
- Departamento de Morfologia, Universidade Federal do Ceará, CE, Brazil
| | - José G Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Chammas SM, Carneiro SM, Ferro RS, Antoniazzi MM, Jared C. Development of integument and cutaneous glands in larval, juvenile and adult toads (Rhinella granulosa): a morphological and morphometric study. ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sérgio M. Chammas
- Laboratory of Cellular Biology; Instituto Butantan; Avenida Vital Brasil 1500 CEP 05503-000 São Paulo São Paulo Brazil
| | - Sylvia M. Carneiro
- Laboratory of Cellular Biology; Instituto Butantan; Avenida Vital Brasil 1500 CEP 05503-000 São Paulo São Paulo Brazil
| | - Rafael S. Ferro
- Laboratory of Cellular Biology; Instituto Butantan; Avenida Vital Brasil 1500 CEP 05503-000 São Paulo São Paulo Brazil
| | - Marta M. Antoniazzi
- Laboratory of Cellular Biology; Instituto Butantan; Avenida Vital Brasil 1500 CEP 05503-000 São Paulo São Paulo Brazil
| | - Carlos Jared
- Laboratory of Cellular Biology; Instituto Butantan; Avenida Vital Brasil 1500 CEP 05503-000 São Paulo São Paulo Brazil
| |
Collapse
|
10
|
Goldberg J, Candioti FV, Akmentins MS. Direct-developing frogs: ontogeny of Oreobates barituensis (Anura: Terrarana) and the development of a novel trait. AMPHIBIA-REPTILIA 2012. [DOI: 10.1163/156853812x638527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Within Anura, direct development involves ontogenetic changes of the biphasic ancestral pattern. The recent partitioning of the genus Eleutherodactylus, along with the proposition of the unranked taxon Terrarana, has renewed an interest to the morphological and ecological diversity among direct-developing frogs. The morphological changes during embryonic development of Oreobates barituensis is similar to those of other Neotropical direct-developing species, including the reduction or absence of several larval and embryonic characters (e.g., external gills and adhesive glands), heterochronic changes (e.g., early developing limbs and late persistence of ciliated epidermal cells), and the appearance of new structures (e.g., egg tooth). The tail achieves an extraordinary peramorphic development (encloses the entire embryo), and the location of its expanded part is interpreted as a heterotopic change resulting in a novel trait. An enveloping tail with apparently non-heterotopic fins, combined with the absence of gills, has been only reported for a species of the related genus Craugastor, and these morphologies suggest an informative perspective for the study of evolution of direct development in terraranans.
Collapse
Affiliation(s)
- Javier Goldberg
- 1CONICET-Instituto de Bio y Geociencias, Museo de Ciencias Naturales, Universidad Nacional de Salta, Mendoza 2, 4400 Salta, Argentina
| | - Florencia Vera Candioti
- 2CONICET-Instituto de Herpetología, Fundación Miguel Lillo, Miguel Lillo 251, 4000 Tucumán, Argentina
| | - Mauricio Sebastián Akmentins
- 1CONICET-Instituto de Bio y Geociencias, Museo de Ciencias Naturales, Universidad Nacional de Salta, Mendoza 2, 4400 Salta, Argentina
- 3CONICET-Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional de Jujuy, Gorriti 237, 4600 S. S. Jujuy, Argentina
| |
Collapse
|
11
|
Nations S, Wages M, Cañas JE, Maul J, Theodorakis C, Cobb GP. Acute effects of Fe₂O₃, TiO₂, ZnO and CuO nanomaterials on Xenopus laevis. CHEMOSPHERE 2011; 83:1053-1061. [PMID: 21345480 DOI: 10.1016/j.chemosphere.2011.01.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/17/2011] [Accepted: 01/29/2011] [Indexed: 05/30/2023]
Abstract
Metal oxide nanomaterials have exhibited toxicity to a variety of aquatic organisms, especially microbes and invertebrates. To date, few studies have evaluated the toxicity of metal oxide nanomaterials on aquatic vertebrates. Therefore, this study examined effects of ZnO, TiO(2), Fe(2)O(3), and CuO nanomaterials (20-100 nm) on amphibians utilizing the Frog Embryo Teratogenesis Assay Xenopus (FETAX) protocol, a 96 h exposure with daily solution exchanges. Nanomaterials were dispersed in reconstituted moderately hard test medium. These exposures did not increase mortality in static renewal exposures containing up to 1,000 mg L(-1) for TiO(2), Fe(2)O(3), CuO, and ZnO, but did induce developmental abnormalities. Gastrointestinal, spinal, and other abnormalities were observed in CuO and ZnO nanomaterial exposures at concentrations as low as 3.16 mg L(-1) (ZnO). An EC(50) of 10.3 mg L(-1) ZnO was observed for total malformations. The minimum concentration to inhibit growth of tadpoles exposed to CuO or ZnO nanomaterials was 10 mg L(-1). The results indicate that select nanomaterials can negatively affect amphibians during development. Evaluation of nanomaterial exposure on vertebrate organisms are imperative to responsible production and introduction of nanomaterials in everyday products to ensure human and environmental safety.
Collapse
Affiliation(s)
- Shawna Nations
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Tattersall GJ, Spiegelaar N. Embryonic motility and hatching success of Ambystoma maculatum are influenced by a symbiotic alga. CAN J ZOOL 2008. [DOI: 10.1139/z08-115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To augment O2supply through the jelly mass and egg capsule, embryonic yellow-spotted salamanders ( Ambystoma maculatum (Shaw, 1802)) take advantage of a unicellular alga, Oophila ambystomatis . Convective currents from surface cilia, however, may also enhance O2transport, whereas muscular contractions could either enhance delivery or contribute to O2consumption. Embryonic motion is, therefore, potentially vital to salamander development. We examined embryonic motility across multiple developmental stages, survivorship, and hatching timing in response to different algal levels by rearing salamander egg masses under three different diel light cycles: 24 h dark, 12 h light, and 24 h light per day. Embryos raised in continuous light hatched synchronously and at slightly earlier developmental stages than embryos raised in the dark or in 12 h light per day. We removed eggs at multiple stages to examine embryonic rotation and muscular contraction rates under 180 min periods of both light and dark. Rotational movements occurred more frequently in alga-free than in algae-inhabited eggs, and more frequently in algae-inhabited eggs in the dark than in light. At later developmental stages, muscular contractions were more frequent in embryos from algae-inhabited egg masses in light than those in the dark; thus embryos with less O2reduced muscular activity, thereby reducing energy consumption when O2availability was compromised.
Collapse
Affiliation(s)
- Glenn J. Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Wildlife Research Station, Algonquin Park, ON K0J 2M0, Canada
| | - Nicole Spiegelaar
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Wildlife Research Station, Algonquin Park, ON K0J 2M0, Canada
| |
Collapse
|