Boulton IC, Cooke JA, Johnson MS. Fluoride-induced lesions in the teeth of the short-tailed field vole (Microtus agrestis): a description of the dental pathology.
J Morphol 1997;
232:155-67. [PMID:
9097466 DOI:
10.1002/(sici)1097-4687(199705)232:2<155::aid-jmor3>3.0.co;2-9]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of fluoride on the appearance of the teeth of the short-tailed field vole, Microtus agrestis, was investigated in both wild animals collected from field sites affected by different levels of industrial fluoride contamination and laboratory-reared animals consuming experimental grass diets of known fluoride concentration or with known fluoride concentrations in drinking water. The extent and severity of lesions on the surface and structure of both incisors and molars are described as six lesion types and related to the amount of biologically available orally ingested fluoride. In the incisors of voles consuming relatively low fluoride diets, lesions are mainly confined to those resulting from disruption of enamel pigmentation expressing itself as concentric bands of pigmentation-free areas on incisor surfaces. The visible effects on molars at low fluoride levels are confined to minor alterations in surface appearance. At higher levels of available dietary fluoride, effects on enamel pigmentation are superseded by alterations in the formation, composition, and strength of both enamel and dentine. The incisors exhibit a marked to severe increase in the cutting tip erosion rates with comparable increases in the extent of abnormal surface changes (enamel hypoplasia) and the loss of enamel pigmentation. The grinding surfaces of molars from animals exposed to high levels of dietary fluoride exhibit increasingly severe erosion of outer enamel regions, combined with cavitation and staining of the exposed central dentine. The mechanisms through which fluoride elicits increasingly visible and pathological alterations to the surface and subsurfaces of rodent teeth are discussed.
Collapse