1
|
Sleight VA. Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation. Brief Funct Genomics 2023; 22:509-516. [PMID: 37592885 PMCID: PMC10658180 DOI: 10.1093/bfgp/elad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage. EvoDevo 2022; 13:17. [PMID: 36123753 PMCID: PMC9484238 DOI: 10.1186/s13227-022-00202-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachiopods and molluscs are lophotrochozoans with hard external shells which are often believed to have evolved convergently. While palaeontological data indicate that both groups are descended from biomineralising Cambrian ancestors, the closest relatives of brachiopods, phoronids and bryozoans, are mineralised to a much lower extent and are comparatively poorly represented in the Palaeozoic fossil record. Although brachiopod and mollusc shells are structurally analogous, genomic and proteomic evidence indicates that their formation involves a complement of conserved, orthologous genes. Here, we study a set of genes comprised of 3 homeodomain transcription factors, one signalling molecule and 6 structural proteins which are implicated in mollusc and brachiopod shell formation, search for their orthologs in transcriptomes or genomes of brachiopods, phoronids and bryozoans, and present expression patterns of 8 of the genes in postmetamorphic juveniles of the rhynchonelliform brachiopod T. transversa. RESULTS Transcriptome and genome searches for the 10 target genes in the brachiopods Terebratalia transversa, Lingula anatina, Novocrania anomala, the bryozoans Bugula neritina and Membranipora membranacea, and the phoronids Phoronis australis and Phoronopsis harmeri resulted in the recovery of orthologs of the majority of the genes in all taxa. While the full complement of genes was present in all brachiopods with a single exception in L. anatina, a bloc of four genes could consistently not be retrieved from bryozoans and phoronids. The genes engrailed, distal-less, ferritin, perlucin, sp1 and sp2 were shown to be expressed in the biomineralising mantle margin of T. transversa juveniles. CONCLUSIONS The gene expression patterns we recovered indicate that while mineralised shells in brachiopods and molluscs are structurally analogous, their formation builds on a homologous process that involves a conserved complement of orthologous genes. Losses of some of the genes related to biomineralisation in bryozoans and phoronids indicate that loss of the capacity to form mineralised structures occurred already in the phoronid-bryozoan stem group and supports the idea that mineralised skeletons evolved secondarily in some of the bryozoan subclades.
Collapse
|
3
|
Gąsiorowski L, Hejnol A. Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EvoDevo 2019; 10:1. [PMID: 30637095 PMCID: PMC6325747 DOI: 10.1186/s13227-018-0114-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/22/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hox genes encode a family of homeodomain containing transcription factors that are clustered together on chromosomes of many Bilateria. Some bilaterian lineages express these genes during embryogenesis in spatial and/or temporal order according to their arrangement in the cluster, a phenomenon referred to as collinearity. Expression of Hox genes is well studied during embryonic and larval development of numerous species; however, relatively few studies focus on the comparison of pre- and postmetamorphic expression of Hox genes in animals with biphasic life cycle. Recently, the expression of Hox genes was described for embryos and larvae of Terebratalia transversa, a rhynchonelliformean brachiopod, which possesses distinct metamorphosis from planktonic larvae to sessile juveniles. During premetamorphic development, T. transversa does not exhibit spatial collinearity and several of its Hox genes are recruited for the morphogenesis of novel structures. In our study, we determined the expression of Hox genes in postmetamorphic juveniles of T. transversa in order to examine metamorphosis-related changes of expression patterns and to test whether Hox genes are expressed in the spatially collinear way in the postmetamorphic juveniles. RESULTS Hox genes are expressed in a spatially non-collinear manner in juveniles, generally showing similar patterns as ones observed in competent larvae: genes labial and post1 are expressed in chaetae-related structures, sex combs reduced in the shell-forming epithelium, whereas lox5 and lox4 in dorso-posterior epidermis. After metamorphosis, expression of genes proboscipedia, hox3, deformed and antennapedia becomes restricted to, respectively, shell musculature, prospective hinge rudiments and pedicle musculature and epidermis. CONCLUSIONS All developmental stages of T. transversa, including postmetamorphic juveniles, exhibit a spatial non-collinear Hox genes expression with only minor changes observed between pre- and postmetamorphic stages. Our results are concordant with morphological observation that metamorphosis in rhynchonelliformean brachiopods, despite being rapid, is rather gradual. The most drastic changes in Hox gene expression patterns observed during metamorphosis could be explained by the inversion of the mantle lobe, which relocates some of the more posterior larval structures into the anterior edge of the juveniles. Co-option of Hox genes for the morphogenesis of novel structures is even more pronounced in postmetamorphic brachiopods when compared to larvae.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Zhang Z, Popov LE, Holmer LE, Zhang Z. Earliest ontogeny of early Cambrian acrotretoid brachiopods - first evidence for metamorphosis and its implications. BMC Evol Biol 2018; 18:42. [PMID: 29609541 PMCID: PMC5880059 DOI: 10.1186/s12862-018-1165-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background Our understanding of the ontogeny of Palaeozoic brachiopods has changed significantly during the last two decades. However, the micromorphic acrotretoids have received relatively little attention, resulting in a poor knowledge of their ontogeny, origin and earliest evolution. The uniquely well preserved early Cambrian fossil records in South China provide a great new opportunity to investigate the phylogenetically important ontogeny of the earliest acrotretoid brachiopods, and give new details of the dramatic changes in anatomy of acrotretoid brachiopods during the transition from planktotrophic larvae to filter feeding sedentary juveniles. Results Well preserved specimens of the earliest Cambrian acrotretoid brachiopods Eohadrotreta zhenbaensis and Eohadrotreta? zhujiahensis (Cambrian Series 2, Shuijingtuo Formation, Three Gorges area, South China) provide new insights into early acrotretoid ontogeny, and have significance for elucidating the poorly understood early phylogeny of the linguliform brachiopods. A more comprehensive understanding of the applied terminology based on new observation, especially in definition of the major growth stages (embryo, planktotrophic larva, post-metamorphically sessile juvenile and adult), is established. The so-called acrotretoid “larval shell” of both valves of Eohadrotreta demonstrates evidence for metamorphosis (shedding of the larval setae and transitions of shell secretion), during the planktotrophic stage. Therefore, it is here termed the metamorphic shell. The inferred early acrotretoid larval body plan included a bivalved protegulum, secreted at the beginning of the pelagic stage, which later developed two pairs of larval dorsal setal sacs and anterior–posterior alignment of the gut during metamorphosis. Conclusion The primary larval body plan of acrotretoid Eohadrotreta is now known to have been shared with most early linguliforms and their relatives (including paterinates, siphonotretoids, early linguloids, the problematic mickwitziids, as well as many early rhynchonelliforms). It is suggested that this type of earliest ontogeny can be considered as plesiomorphic for the Brachiopoda and probably first evolved in stem group brachiopods with subsequent heterochronic changes.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Shaanxi Key laboratory of Early Life and Environments and Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, 710069, China.,Uppsala University, Department of Earth Sciences, Palaeobiology, Villav 16, SE-752 36, Uppsala, Sweden
| | - Leonid E Popov
- Department of Geology, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, UK
| | - Lars E Holmer
- Shaanxi Key laboratory of Early Life and Environments and Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, 710069, China.,Uppsala University, Department of Earth Sciences, Palaeobiology, Villav 16, SE-752 36, Uppsala, Sweden
| | - Zhifei Zhang
- Shaanxi Key laboratory of Early Life and Environments and Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve. ZOOMORPHOLOGY 2013. [DOI: 10.1007/s00435-013-0194-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Santagata S. Evaluating neurophylogenetic patterns in the larval nervous systems of brachiopods and their evolutionary significance to other bilaterian phyla. J Morphol 2011; 272:1153-69. [DOI: 10.1002/jmor.10975] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 01/11/2023]
|
7
|
Holmer LE. Inarticulate brachiopods around the Middle-Upper Ordovician boundary in Västergötland. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/11035898609452633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Altenburger A, Wanninger A. Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa. Front Zool 2009; 6:3. [PMID: 19192287 PMCID: PMC2645390 DOI: 10.1186/1742-9994-6-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Despite significant methodological progress, Brachiopoda remains one of the lophotrochozoan phyla for which no recent ontogenetic data employing modern methodologies such as fluorescence labelling and confocal microscopy are available. This is particularly astonishing given the ongoing controversy concerning its phylogenetic position. In order to contribute new morphogenetic data for phylogenetic and evolutionary inferences, we describe herein the ontogeny and myoanatomy of larvae and adults of the rhynchonelliform brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa using fluorescence F-actin labelling combined with confocal laserscanning microscopy. Results Fully grown larvae of A. cordata and T. transversa consist of three distinct body regions, namely an apical lobe, a mantle lobe with four bundles of setae, and a pedicle lobe. Myogenesis is very similar in these two species. The first anlagen of the musculature develop in the pedicle lobe, followed by setae muscles and the mantle lobe musculature. Late-stage larvae show a network of strong pedicle muscles, central mantle muscles, longitudinal muscles running from the mantle to the pedicle lobe, setae pouch muscles, setae muscles, a U-shaped muscle, serial mantle muscles, and apical longitudinal as well as apical transversal muscles. Fully developed A. cistellula larvae differ from the former species in that they have only two visible body lobes and lack setae. Nevertheless, we found corresponding muscle systems to all muscles present in the former two species, except for the musculature associated with the setae, in larvae of A. cistellula. With our survey of the adult myoanatomy of A. cordata and A. cistellula and the juvenile muscular architecture of T. transversa we confirm the presence of adductors, diductors, dorsal and ventral pedicle adjustors, mantle margin muscles, a distinct musculature of the intestine, and striated muscle fibres in the tentacles for all three species. Conclusion Our data indicate that larvae of rhynchonelliform brachiopods share a common muscular bodyplan and are thus derived from a common ancestral larval type. Comparison of the muscular phenotype of rhynchonelliform larvae to that of the other two lophophorate phyla, Phoronida and Ectoprocta, does not indicate homology of individual larval muscles. This may be due to an early evolutionary split of the ontogenetic pathways of Brachiopoda, Phoronida, and Ectoprocta that gave rise to the morphological diversity of these phyla.
Collapse
Affiliation(s)
- Andreas Altenburger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
9
|
Nielsen C. Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:401-47. [PMID: 15915468 DOI: 10.1002/jez.b.21050] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The embryology of sipunculans, entoprocts, nemertines, platyhelminths (excluding acoelomorphs), rotifers, ectoprocts, phoronids, brachiopods, echinoderms and enteropneusts is reviewed with special emphasis on cell-lineage and differentiation of ectodermal structures. A group Spiralia comprising the four first-mentioned phyla plus annelids and molluscs seems well defined through the presence of spiral cleavage with early blastomere specification, prototroch with characteristic cell-lineage, cerebral ganglia developing from cells of the first micromere quartet (i.e., the episphere) and a ventral nervous system developing from the hyposphere. The planktotrophic trochophore was probably the larval type of the ancestor of this group. Another group comprising phoronids, brachiopods, echinoderms and enteropneusts appears equally well delimited. It is characterized by radial cleavage with late blastomere specification, possibly by the presence of a neotroch consisting of monociliate cells, by the absence of cerebral ganglia and of a well-defined brain and paired longitudinal nerve cords developing in connection with the blastopore, and by coelomic organization. Its ancestral larval type was probably a dipleurula. Several characters link rotifers with the spiralians, although they do not show the spiral pattern in the cleavage. Ectoprocts are still a problematic group, but some characters indicate spiralian affinities.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum (University of Copenhagen), Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Chuang SH. The embryonic, larval and early postlarval development of the terebratellid brachiopodCalloria inconspicua(Sowerby). J R Soc N Z 1996. [DOI: 10.1080/03014223.1996.9517507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
|
12
|
Strieker SA, Cavey MJ. Calcareous Concretions and Non-Calcified Hooks in the Body Wall of Nemertean Worms. ACTA ZOOL-STOCKHOLM 1988. [DOI: 10.1111/j.1463-6395.1988.tb00899.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Stricker SA, Reed CG. Development of the pedicle in the articulate brachiopod Terebratalia transversa (Brachiopoda, Terebratulida). ZOOMORPHOLOGY 1985. [DOI: 10.1007/bf00311968] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Stricker SA. The ultrastructure and formation of the calcareous ossicles in the body wall of the sea cucumber Leptosynapta clarki (Echinodermata, Holothuroida). ZOOMORPHOLOGY 1985. [DOI: 10.1007/bf00311965] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Stricker SA, Reed CG. The ontogeny of shell secretion in Terebratalia transversa (Brachiopoda, Articulata). I. Development of the mantle. J Morphol 1985; 183:233-50. [PMID: 4039009 DOI: 10.1002/jmor.1051830302] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The morphology of the mantle in free-swimming and metamorphosing larvae of the articulate brachiopod Terebratalia transversa has been examined by scanning and transmission electron microscopy. The mantle begins to form approximately 2 days after fertilization and subsequently develops into a skirtlike lobe that encircles the middle region of the larval body. A simple epithelium covers both the outer surface of the mantle lobe and the inner side situated next to the pedicle lobe of the larva. During metamorphosis, the mantle lobe is everted over the anterior end of the larva. Thus, the epithelium covering the outer part of the mantle lobe in the larva subsequently becomes the inner epithelium of the juvenile mantle. Similarly, the inner epithelium of the larval mantle lobe represents the future outer epithelium of the juvenile mantle. In free-swimming larvae, the prospective outer mantle epithelium contains two types of cells, called "lobate" and "vesicular" cells. Lobate cells initially deposit a thin layer of amorphous material, and vesicular cells produce ovoid multigranular bodies. Following settlement at about 5 days postfertilization, the vesicular cells secrete an electron-dense sheet that constitutes the basal layer of the developing periostracum. Within several hours to a day thereafter, reversal of the mantle lobe is rapidly effected, apparently by contractions of the pedicle adjustor muscles.
Collapse
|