1
|
Torgersen KT, Bouton BJ, Hebert AR, Kleyla NJ, Plasencia X, Rolfe GL, Tagliacollo VA, Albert JS. Phylogenetic structure of body shape in a diverse inland ichthyofauna. Sci Rep 2023; 13:20758. [PMID: 38007528 PMCID: PMC10676429 DOI: 10.1038/s41598-023-48086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Body shape is a fundamental metric of animal diversity affecting critical behavioral and ecological dynamics and conservation status, yet previously available methods capture only a fraction of total body-shape variance. Here we use structure-from-motion (SFM) 3D photogrammetry to generate digital 3D models of adult fishes from the Lower Mississippi Basin, one of the most diverse temperate-zone freshwater faunas on Earth, and 3D geometric morphometrics to capture morphologically distinct shape variables, interpreting principal components as growth fields. The mean body shape in this fauna resembles plesiomorphic teleost fishes, and the major dimensions of body-shape disparity are similar to those of other fish faunas worldwide. Major patterns of body-shape disparity are structured by phylogeny, with nested clades occupying distinct portions of the morphospace, most of the morphospace occupied by multiple distinct clades, and one clade (Acanthomorpha) accounting for over half of the total body shape variance. In contrast to previous studies, variance in body depth (59.4%) structures overall body-shape disparity more than does length (31.1%), while width accounts for a non-trivial (9.5%) amount of the total body-shape disparity.
Collapse
Affiliation(s)
| | | | - Alyx R Hebert
- Department of Biology, University of Louisiana, Lafayette, USA
| | - Noah J Kleyla
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - Garrett L Rolfe
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, USA
| |
Collapse
|
2
|
Tharakan S, Shepherd N, Gower DJ, Stanley EL, Felice RN, Goswami A, Watanabe A. High-Density Geometric Morphometric Analysis of Intraspecific Cranial Integration in the Barred Grass Snake ( Natrix helvetica) and Green Anole ( Anolis carolinensis). Integr Org Biol 2023; 5:obad022. [PMID: 37397233 PMCID: PMC10311474 DOI: 10.1093/iob/obad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
How do phenotypic associations intrinsic to an organism, such as developmental and mechanical processes, direct morphological evolution? Comparisons of intraspecific and clade-wide patterns of phenotypic covariation could inform how population-level trends ultimately dictate macroevolutionary changes. However, most studies have focused on analyzing integration and modularity either at macroevolutionary or intraspecific levels, without a shared analytical framework unifying these temporal scales. In this study, we investigate the intraspecific patterns of cranial integration in two squamate species: Natrix helvetica and Anolis carolinensis. We analyze their cranial integration patterns using the same high-density three-dimensional geometric morphometric approach used in a prior squamate-wide evolutionary study. Our results indicate that Natrix and Anolis exhibit shared intraspecific cranial integration patterns, with some differences, including a more integrated rostrum in the latter. Notably, these differences in intraspecific patterns correspond to their respective interspecific patterns in snakes and lizards, with few exceptions. These results suggest that interspecific patterns of cranial integration reflect intraspecific patterns. Hence, our study suggests that the phenotypic associations that direct morphological variation within species extend across micro- and macroevolutionary levels, bridging these two scales.
Collapse
Affiliation(s)
- S Tharakan
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, 100 Northern Boulevard, Old Westbury, NY 11568, USA
| | - N Shepherd
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - D J Gower
- Life Sciences Division, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - E L Stanley
- Digital Imaging Division, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-0001, USA
| | - R N Felice
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Life Sciences Division, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - A Goswami
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Life Sciences Division, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | | |
Collapse
|
3
|
Cohen KE, Ackles AL, Hernandez LP. The role of heterotopy and heterochrony during morphological diversification of otocephalan epibranchial organs. Evol Dev 2022; 24:79-91. [PMID: 35708165 DOI: 10.1111/ede.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Epibranchial organs (EBOs), found in at least five of the eight otomorphan families, are used to aggregate small prey inside the buccopharyngeal cavity and range in morphological complexity from a singular, small slit on the pharyngeal roof to several, elongated soft tissue tubes. Despite broad phylogenetic representation, little is known about the origin, development, or evolution of EBOs. We hypothesize that both heterochronic and heterotopic changes throughout the evolution of EBOs are at the root of their morphological diversity. Heterochrony is a foundational explanation in developmental studies, however, heterotopy, a developmental change in spatial or topographical relationships, can have even more profound effects on a given structure but has received relatively little attention. Here, we investigate how developmental mechanisms may drive morphological diversity of EBOs within otomorphan fishes. We compare early pharyngeal development in three species, Anchoa mitchilli (Engraulidae) which has the most basic EBO, B. tyrannus (Clupeidae) which has a more complex EBO, and Hypophthalmichthys molitrix (Cyprinidae) which has the most complex EBO yet described. Using branchial arch growth rates and morphological analyses, we illustrate how both heterochronic and heterotopic mechanisms are responsible for some of the phenotypic diversity seen in otomorphan EBOs. Importantly, we also identify conserved developmental patterns that further our understanding of how EBOs may have first originated and evolved across actinopterygian fishes.
Collapse
Affiliation(s)
- Karly E Cohen
- Department of Biology, University of Washington, Seattle, Washington, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
| | - Acacia L Ackles
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - L Patricia Hernandez
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Vujić V, Ilić B, Lučić L, Tomić V, Jovanović Z, Pavković-Lučić S, Makarov S. Morphological integration of the head capsule in the millipede Megaphyllum unilineatum (C. L. Koch, 1838) (Diplopoda: Julida): can different modules be recognized? ZOOLOGY 2021; 149:125970. [PMID: 34628210 DOI: 10.1016/j.zool.2021.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Covariation of multiple morphological traits and modularity have been widely studied in the field of evolutionary developmental biology. Subunits of a morphological structure can evolve separately from each other in a modular fashion. The aims of our study therefore were: i) to test the hypothesis of modularity in the dorsal part of the head capsule and the gnathochilarium separately during late postembryogenesis in the julidan millipede Megaphyllum unilineatum (C. L. Koch, 1838) using geometric morphometrics; and ii) to investigate the influence of allometry on overall morphological integration in the dorsal part of the head capsule and the gnathochilarium in the mentioned species. Individuals from different ontogenetic stadia (stadium VI - stadium XI) were included in the analyses. Significant influence of fluctuating asymmetry on the dorsal part of the head capsule shape was detected by Procrustes ANOVA. Regressions were significant for the symmetric component of both analysed morphological traits, while non-significant regression was detected for the asymmetric component of the head capsule's dorsal part. Hypotheses of modularity for the dorsal part of the head capsule and the gnathochilarium are rejected because our results indicate that a small proportion of alternate partitions has higher covariation between subsets of structure than between the hypothesized modules. Contrary to our expectations, results of the present study show that allometry does not increase the level of morphological integration in the dorsal part of the head capsule and the gnathochilarium in M. unilineatum. Based on the obtained results, we conclude that the dorsal part of the head capsule and the gnathochilarium are not composed of independent modules and that in the case of the capsule's dorsal part, developmental processes affect morphological integration in different ways at different levels of shape variation.
Collapse
Affiliation(s)
- Vukica Vujić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Bojan Ilić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Luka Lučić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Vladimir Tomić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Zvezdana Jovanović
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Sofija Pavković-Lučić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Slobodan Makarov
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
5
|
Urošević A, Ajduković M, Arntzen JW, Ivanović A. Morphological integration and serial homology: A case study of the cranium and anterior vertebrae in salamanders. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | | | - Ana Ivanović
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Zoology Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
6
|
Felice RN, Randau M, Goswami A. A fly in a tube: Macroevolutionary expectations for integrated phenotypes. Evolution 2018; 72:2580-2594. [PMID: 30246245 PMCID: PMC6585935 DOI: 10.1111/evo.13608] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 02/03/2023]
Abstract
Phenotypic integration and modularity are ubiquitous features of complex organisms, describing the magnitude and pattern of relationships among biological traits. A key prediction is that these relationships, reflecting genetic, developmental, and functional interactions, shape evolutionary processes by governing evolvability and constraint. Over the last 60 years, a rich literature of research has quantified patterns of integration and modularity across a variety of clades and systems. Only recently has it become possible to contextualize these findings in a phylogenetic framework to understand how trait integration interacts with evolutionary tempo and mode. Here, we review the state of macroevolutionary studies of integration and modularity, synthesizing empirical and theoretical work into a conceptual framework for predicting the effects of integration on evolutionary rate and disparity: a fly in a tube. While magnitude of integration is expected to influence the potential for phenotypic variation to be produced and maintained, thus defining the shape and size of a tube in morphospace, evolutionary rate, or the speed at which a fly moves around the tube, is not necessarily controlled by trait interactions. Finally, we demonstrate this reduced disparity relative to the Brownian expectation for a given rate of evolution with an empirical example: the avian cranium.
Collapse
Affiliation(s)
- Ryan N Felice
- Department of Life Sciences, The Natural History Museum, London SW7 5DB, United Kingdom.,Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Marcela Randau
- Department of Life Sciences, The Natural History Museum, London SW7 5DB, United Kingdom.,Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, The Natural History Museum, London SW7 5DB, United Kingdom.,Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Urošević A, Ljubisavljević K, Ivanović A. Multilevel assessment of the Lacertid lizard cranial modularity. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aleksandar Urošević
- Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | | | - Ana Ivanović
- Institute of Zoology Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
8
|
Andjelković M, Tomović L, Ivanović A. Morphological integration of the kinetic skull inNatrixsnakes. J Zool (1987) 2017. [DOI: 10.1111/jzo.12477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Andjelković
- University of Belgrade; Institute for Biological Research “Siniša Stanković”; Belgrade Serbia
| | - L. Tomović
- University of Belgrade; Faculty of Biology; Belgrade Serbia
| | - A. Ivanović
- University of Belgrade; Faculty of Biology; Belgrade Serbia
- Naturalis Biodiversity Center; Leiden The Netherlands
| |
Collapse
|
9
|
Larochelle CR, Pickens FAT, Burns MD, Sidlauskas BL. Long-term Isopropanol Storage Does Not Alter Fish Morphometrics. COPEIA 2016. [DOI: 10.1643/cg-15-303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Brown CM, Vavrek MJ. Small sample sizes in the study of ontogenetic allometry; implications for palaeobiology. PeerJ 2015; 3:e818. [PMID: 25780770 PMCID: PMC4358694 DOI: 10.7717/peerj.818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
Quantitative morphometric analyses, particularly ontogenetic allometry, are common methods used in quantifying shape, and changes therein, in both extinct and extant organisms. Due to incompleteness and the potential for restricted sample sizes in the fossil record, palaeobiological analyses of allometry may encounter higher rates of error. Differences in sample size between fossil and extant studies and any resulting effects on allometric analyses have not been thoroughly investigated, and a logical lower threshold to sample size is not clear. Here we show that studies based on fossil datasets have smaller sample sizes than those based on extant taxa. A similar pattern between vertebrates and invertebrates indicates this is not a problem unique to either group, but common to both. We investigate the relationship between sample size, ontogenetic allometric relationship and statistical power using an empirical dataset of skull measurements of modern Alligator mississippiensis. Across a variety of subsampling techniques, used to simulate different taphonomic and/or sampling effects, smaller sample sizes gave less reliable and more variable results, often with the result that allometric relationships will go undetected due to Type II error (failure to reject the null hypothesis). This may result in a false impression of fewer instances of positive/negative allometric growth in fossils compared to living organisms. These limitations are not restricted to fossil data and are equally applicable to allometric analyses of rare extant taxa. No mathematically derived minimum sample size for ontogenetic allometric studies is found; rather results of isometry (but not necessarily allometry) should not be viewed with confidence at small sample sizes.
Collapse
Affiliation(s)
| | - Matthew J. Vavrek
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Ivanović A, Kalezić ML. Testing the hypothesis of morphological integration on a skull of a vertebrate with a biphasic life cycle: a case study of the alpine newt. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 314:527-38. [PMID: 23939712 DOI: 10.1002/jez.b.21358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 11/10/2022]
Abstract
In this article, we explore the possible influences of the developmental and functional relationships between skeletal elements on the pattern of morphological integration in the adult skull of the alpine newt. Like many tailed amphibians, the alpine newt has a biphasic life cycle, which implies the possibility that two distinct sets of constraints on development and function of the cranial skeleton may act at different times. We study how trait covariation, resulting from processes early in development, affects patterns of covariation at the adult stage. We test whether the observed patterns of integration are consistent with those predicted from three a priori hypothesized sources of integration: developmental timing, hormonally mediated growth/remodeling during metamorphosis, and developmental and functional relationships. The analyses of the covariation among the landmarks in the dorsal and ventral alpine newt craniums yield somewhat contrasting results. Our results do not indicate a clear correspondence between the observed variations in the skull shape and any of the three proposed hypotheses. No traceable reflection of hypothesized developmental relationships in the pattern of morphological integration/modularity in the adult skull indicate that covariation structure is continually restructured by overlaying variation introduced through developmental and environmental factors at different stages of development. This finding supports the recently elaborated palimpsest view of morphological integration. Also, our results indicate that the allometry-free shape data have an even higher level of morphological integration than the data that contain the allometric component of the shape variation.
Collapse
Affiliation(s)
- Ana Ivanović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | | |
Collapse
|
12
|
Garriga N, Llorente GA. Chondrocranial ontogeny of Pelodytes punctatus (Anura: Pelodytidae). Response to competition: geometric morphometric and allometric change analysis. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00520.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Parsons KJ, Andreeva V, James Cooper W, Yelick PC, Craig Albertson R. Morphogenesis of the zebrafish jaw: development beyond the embryo. Methods Cell Biol 2011; 101:225-48. [PMID: 21550447 DOI: 10.1016/b978-0-12-387036-0.00011-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zebrafish has emerged as an important model for vertebrate development as it relates to human health and disease. Work in this system has provided significant insights into the variety of genetic signals that direct the cellular activities and tissue interactions necessary for proper assembly of the pharyngeal skeleton. Unfortunately our understanding of craniofacial development beyond embryonic stages is far less complete. Stated another way, we know a great deal about the early patterning of the skull, but we know comparatively little about how mature craniofacial shape is determined and maintained over time. Here we propose ways to expand the current molecular genetic paradigm beyond the embryo to gain an understanding of the processes and mechanisms that guide growth and remodeling of mineralized craniofacial, skeletal, and dental tissues. First, we discuss sources of adult mutant phenotypes that can be used to study of postembryonic development. Next, we review salient quantitative methods that are necessary to define complex adult phenotypes. We also discuss how other organismal systems can be used to inform and complement studies in zebrafish. We conclude by discussing the implications for such studies within the context of furthering an understanding of the etiology and pathophysiology of human craniofacial malformations, as well as informing an understanding of adaptive craniofacial variation among natural populations.
Collapse
Affiliation(s)
- Kevin J Parsons
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|
15
|
|
16
|
De Bivort BL, Clouse RM, Giribet G. A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2009.00562.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Riedlecker E, Herler J. Trophic morphology of the coral-associated genusGobiodon(Teleostei: Gobiidae) from the Red Sea. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2008.00497.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
IVANOVIĆ ANA, SOTIROPOULOS KONSTANTINOS, VUKOV TANJAD, ELEFTHERAKOS KAROLOS, DŽUKIĆ GEORG, MARIA POLYMENI ROSA, KALEZIĆ MILOŠL. Cranial shape variation and molecular phylogenetic structure of crested newts (Triturus cristatus superspecies: Caudata, Salamandridae) in the Balkans. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01045.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Li H, Huang Z, Gai J, Wu S, Zeng Y, Li Q, Wu R. A conceptual framework for mapping quantitative trait Loci regulating ontogenetic allometry. PLoS One 2007; 2:e1245. [PMID: 18043752 PMCID: PMC2080758 DOI: 10.1371/journal.pone.0001245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 10/17/2007] [Indexed: 11/19/2022] Open
Abstract
Although ontogenetic changes in body shape and its associated allometry has been studied for over a century, essentially nothing is known about their underlying genetic and developmental mechanisms. One of the reasons for this ignorance is the unavailability of a conceptual framework to formulate the experimental design for data collection and statistical models for data analyses. We developed a framework model for unraveling the genetic machinery for ontogenetic changes of allometry. The model incorporates the mathematical aspects of ontogenetic growth and allometry into a maximum likelihood framework for quantitative trait locus (QTL) mapping. As a quantitative platform, the model allows for the testing of a number of biologically meaningful hypotheses to explore the pleiotropic basis of the QTL that regulate ontogeny and allometry. Simulation studies and real data analysis of a live example in soybean have been performed to investigate the statistical behavior of the model and validate its practical utilization. The statistical model proposed will help to study the genetic architecture of complex phenotypes and, therefore, gain better insights into the mechanistic regulation for developmental patterns and processes in organisms.
Collapse
Affiliation(s)
- Hongying Li
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
| | - Zhongwen Huang
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- Department of Agronomy, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| | - Junyi Gai
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Song Wu
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
| | - Yanru Zeng
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin’an, Zhejiang, People’s Republic of China
| | - Qin Li
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
| | - Rongling Wu
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
21
|
Mitteroecker P, Bookstein F. The Conceptual and Statistical Relationship between Modularity and Morphological Integration. Syst Biol 2007; 56:818-36. [DOI: 10.1080/10635150701648029] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Philipp Mitteroecker
- Department of Anthropology, University of Vienna Althanstrasse 14, A-1091, Vienna, Austria E-mail:
- Konrad Lorenz Institute for Evolution and Cognition Research Adolf Lorenz Gasse 2, A-3422, Altenberg, Austria
| | - Fred Bookstein
- Department of Anthropology, University of Vienna Althanstrasse 14, A-1091, Vienna, Austria E-mail:
- Konrad Lorenz Institute for Evolution and Cognition Research Adolf Lorenz Gasse 2, A-3422, Altenberg, Austria
- Department of Statistics, University of Washington Padelford B-207, Seattle, WA, 98195-4322, USA
| |
Collapse
|
22
|
KLINGENBERG CHRISTIANPETER. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.1997.tb00026.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Swiderski DL. SEPARATING SIZE FROM ALLOMETRY: ANALYSIS OF LOWER JAW MORPHOLOGY IN THE FOX SQUIRREL, SCIURUS NIGER. J Mammal 2003. [DOI: 10.1644/brb-025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Strait DS. Integration, phylogeny, and the hominid cranial base. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2001; 114:273-97. [PMID: 11275958 DOI: 10.1002/ajpa.1041] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basicranial features were examined in catarrhine primates and early hominids in order to demonstrate how information about morphological integration can be incorporated into phylogenetic analysis. Hypotheses purporting to explain the functional and structural relationships of basicranial characters were tested using factor analysis. Characters found to be functionally or structurally related to each other were then further examined in order to determine whether there was evidence that they were phylogenetically independent. If phylogenetic independence could not be demonstrated, then the characters were presumed to be integrated and were grouped into a complex. That complex was then treated as if it were a single character for the purposes of cladistic analysis. Factor analysis revealed that five basicranial features may be structurally related to relative brain size in hominoids. Depending on how one defines phylogenetic independence, as few as two, or as many as all of those characters might be morphologically integrated. A cladistic analysis of early hominids based on basicranial features revealed that the use of integrated complexes had a substantial effect on the phylogenetic position of Australopithecus africanus, a species whose relationships are poorly resolved. Moreover, the use of complexes also had an effect on reanalyses of certain published cladistic data sets, implying that those studies might have been biased by patterns of basicranial integration. These results demonstrate that patterns of morphological integration need to be considered carefully in all morphology-based cladistic analyses, regardless of taxon or anatomical focus. However, an important caveat is that the functional and structural hypotheses tested here predicted much higher degrees of integration than were observed. This result warns strongly that hypotheses of integration must be tested before they can be adequately employed in phylogenetic analysis. The uncritical acceptance of an untested hypothesis of integration is likely to be as disruptive to a cladistic analysis as when integration is ignored.
Collapse
Affiliation(s)
- D S Strait
- Doctoral Program in Anthropological Sciences, State University of New York, Stony Brook, New York 11794-4364, USA.
| |
Collapse
|
25
|
Lieberman DE, Ross CF, Ravosa MJ. The primate cranial base: Ontogeny, function, and integration. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2001. [DOI: 10.1002/1096-8644(2000)43:31+<117::aid-ajpa5>3.0.co;2-i] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Penin X, Berge C. [Heterochronia via procrustean superimposition: application to the skulls of Homonidae primates]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:87-93. [PMID: 11212506 DOI: 10.1016/s0764-4469(00)01260-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The procrustes superimposition method is well adapted to heterochronic studies in the field of evolutionary biology. 1) The procrustes method gives a precise and mathematical definition of two of the three heterochronic variables: size and shape. 2) It allows us to describe complex anatomical structures and thus to analyse the whole structure and not just to proceed trait by trait. 3) The approach is statistical and the different hypotheses and results may be statistically tested. 4) When applied to heterochronies the method allows us to test if there is a common shape change related to allometry. In the present study of three species of Hominoid primates, the procrustes superimposition reveals that various heterochronic processes are simultaneously present. Size-age-shape dissociations between species, already present in the first ontogenetic stage, are amplified with growth until adult stage. As compared with that of the chimpanzee, the growth of the gorilla skull is accelerated in terms of size-shape covariation and size alone. The growth of the human skull is neotenic as compared with that of the apes.
Collapse
Affiliation(s)
- X Penin
- URBI, faculté de chirurgie dentaire de l'université Paris-V, 1, rue Maurice-Arnoux, 91120 Montrouge, France.
| | | |
Collapse
|
27
|
Landmarks, Localization, and the Use of Morphometrics in Phylogenetic Analysis. TOPICS IN GEOBIOLOGY 2001. [DOI: 10.1007/978-1-4615-0571-6_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
|
29
|
Abstract
Heterochrony, evolutionary changes in rate or timing of development producing parallelism between ontogeny and phylogeny, is viewed as the most common type of evolutionary change in development. Alternative hypotheses such as heterotopy, evolutionary change in the spatial patterning of development, are rarely entertained. We examine the evidence for heterochrony and heterotopy in the evolution of body shape in two clades of piranhas. One of these is the sole case of heterochrony previously reported in the group; the others were previously interpreted as cases of heterotopy. To compare ontogenies of shape, we computed ontogenetic trajectories of shape by multivariate regression of geometric shape variables (i.e., partial warp scores and shape coordinates) on centroid size. Rates of development relative to developmental age and angles between the trajectories were compared statistically. We found a significant difference in developmental rate between species of Serrasalmus, suggesting that heterochrony is a partial explanation for the evolution of body shape, but we also found a significant difference between their ontogenetic transformations; the direction of the difference between them suggests that heterotopy also plays a role in this group. In Pygocentrus we found no difference in developmental rate among species, but we did find a difference in the ontogenies, suggesting that heterotopy, but not heterochrony, is the developmental basis for shape diversification in this group. The prevalence of heterotopy as a source of evolutionary novelty remains largely unexplored and will not become clear until the search for developmental explanations looks beyond heterochrony.
Collapse
Affiliation(s)
- M L Zelditch
- Museum of Paleontology, University of Michigan, Ann Arbor 48109, USA.
| | | | | |
Collapse
|
30
|
|
31
|
|
32
|
Abstract
Scaling predictions pioneered by A.V. Hill state that isometric changes in kinematics result from isometric changes in size. These predictions have been difficult to support because few animals display truly isometric growth. An exception to this rule is said to be the toads in the genus Bufo, which can grow over three orders of magnitude. To determine whether skull shape increases isometrically, I used linear measurements and geometric morphometrics to quantify shape variation in a size series of 69 skulls from the marine toad, B. marinus. Toads ranged in body mass from 1.8 gm to a calculated 1, 558.9 gm. Of all linear measurements (S/V length, skull width, skull length, levator mass, depressor mass, adductor foramen area), only the area of the adductor foramen increased faster than body mass; the remaining variables increased more slowly. In addition, modeling the lower jaw as a lever-arm system showed that the lengths of the closing in- and out-levers scaled isometrically with body mass despite the fact that the skull itself is changing allometrically. Geometric morphometrics discerned areas of greatest variability with increasing body mass at the rear of the skull in the area of the squamosal bone and the adductor foramen. This increase in area of the adductor foramen may allow more muscle to move the relatively greater mass of the lower jaw in larger toads, although adductor mass scales with body mass. If B. marinus feeds in a similar manner to other Bufo, these results imply that morphological allometry may still result in kinematic isometry.
Collapse
Affiliation(s)
- J M Birch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
33
|
Yaroch LA. Shape analysis using the thin-plate spline: Neanderthal cranial shape as an example. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1996. [DOI: 10.1002/(sici)1096-8644(1996)23+<43::aid-ajpa3>3.0.co;2-a] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|