1
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
2
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
3
|
Jezierska M, Miernik A, Sojka J, Student S, Śliwińska MA, Gross V, Poprawa I. Oogenesis in the tardigrade Hypsibius exemplaris Gąsiorek, Stec, Morek & Michalczyk, 2018 (Eutardigrada, Hypsibiidae). Micron 2021; 150:103126. [PMID: 34399159 DOI: 10.1016/j.micron.2021.103126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Tardigrades are small, globally widespred invertebrates that need at least a thin layer of water to be active. There are gonochoric, hermaphroditic, and parthenogenetic species among them. The main aim of this study was to analyze the structure of the ovary, the structure of female germ cell clusters, and the course of oogenesis in the parthenogenetic species Hypsibius exemplaris, which in 2007 was recognized as a model organism. The material was analyzed using light and confocal microscopy as well as transmission and scanning electron microscopy. Histochemical and immunohistochemical methods were used. Our study showed that in the meroistic-polytrophic ovary of the examined species, branched germ cell clusters are formed in which one cell differentiates into an oocyte while the remaining cells become trophocytes. Vitellogenesis is of the mixed type: the first part of the yolk is synthesized by the oocyte (autosynthesis); the second part is synthesized by trophocytes and transported to the oocyte by cytoplasmic bridges; and the third part is synthesized outside the ovary (in storage cells) and transported to the oocyte by endocytosis. At the end of oogenesis, the trophocytes die by apoptosis. Parthenogenetic female of H. exemplaris lays from one to a dozen smooth eggs into exuviae.
Collapse
Affiliation(s)
- Marta Jezierska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland; Department of Pathomorphology and Molecular Diagnostics, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Aleksandra Miernik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Julia Sojka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Sebastian Student
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Vladimir Gross
- University of Kassel, Institute of Biology, Department of Zoology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Izabela Poprawa
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
4
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
5
|
Ahmed RB, Urbisz AZ, Świątek P. An ultrastructural study of the ovary cord organization and oogenesis in the amphibian leech Batracobdella algira (Annelida, Clitellata, Hirudinida). PROTOPLASMA 2021; 258:191-207. [PMID: 33033944 DOI: 10.1007/s00709-020-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study reveals the ovary micromorphology and the course of oogenesis in the leech Batracobdella algira (Glossiphoniidae). Using light, fluorescence, and electron microscopies, the paired ovaries were analyzed. At the beginning of the breeding season, the ovaries were small, but as oogenesis progressed, they increased in size significantly, broadened, and elongated. A single convoluted ovary cord was located inside each ovary. The ovary cord was composed of numerous germ cells gathered into syncytial groups, which are called germ-line cysts. During oogenesis, the clustering germ cells differentiated into two functional categories, i.e., nurse cells and oocytes, and therefore, this oogenesis was recognized as being meroistic. As a rule, each clustering germ cell had one connection in the form of a broad cytoplasmic channel (intercellular bridge) that connected it to the cytophore. There was a synchrony in the development of the clustering germ cells in the whole ovary cord. In the immature leeches, the ovary cords contained undifferentiated germ cells exclusively, from which, previtellogenic oocytes and nurse cells differentiated as the breeding season progressed. Only the oocytes grew considerably, gathered nutritive material, and protruded at the ovary cord surface. The vitellogenic oocytes subsequently detached from the cord and filled tightly the ovary sac, while the nurse cells and the cytophore degenerated. Ripe eggs were finally deposited into the cocoons. A comparison of the ovary structure and oogenesis revealed that almost all of the features that are described in the studied species were similar to those that are known from other representatives of Glossiphoniidae, which indicates their evolutionary conservatism within this family.
Collapse
Affiliation(s)
- Raja Ben Ahmed
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| | - Anna Z Urbisz
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa, 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa, 9, 40-007, Katowice, Poland
| |
Collapse
|
6
|
Structure of the germarium and female germ-cell clusters in Thulinius ruffoi (Bertolani, 1982) (Tardigrada: Eutardigrada: Parachela). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThulinius ruffoi is a freshwater species that has the ability to reproduce via parthenogenesis. A meroistic polytrophic ovary is present in this species. Analyses of the germarium structure, and formation and organization of female germ-cell clusters were performed using light, confocal laser scanning, transmission electron and serial block-face scanning electron microscopy. The germarium is the small, anterior part of an ovary that contains putative germ-line stem cells. In the studied species, the female germ-cell clusters are large and branched. Only one cell in each cluster develops into an oocyte, while all the other cells become trophocytes. In this paper, we present the first report on the presence of F-actin as a component of the intercellular bridges that connect the cells in the germ-cell cluster of T. ruffoi. Moreover, our results show that the female germ-cell clusters are formed as the result of both synchronous and asynchronous divisions and that their organization can vary not only between individuals of the investigated species, but also that clusters developing simultaneously within the same ovary can have a different spatial organization.
Collapse
|
7
|
Abstract
Even though tardigrades have been known since 1772, their phylogenetic position is still controversial. Tardigrades are regarded as either the sister group of arthropods, onychophorans, or onychophorans plus arthropods. Furthermore, the knowledge about their gametogenesis, especially oogenesis, is still poor and needs further analysis. The process of oogenesis has been studied solely for several eutardigradan species. Moreover, the spatial organization of the female germ-line clusters has been described for three species only. Meroistic ovaries characterize all analyzed species. In species of the Parachela, one cell per germ-cell cluster differentiates into the oocyte, while the remaining cells become the trophocytes. In Apochela several cells in the cluster differentiate into oocytes. Vitellogenesis is of a mixed type. The eggs are covered with the egg capsule that is composed of two shells: the thin vitelline envelope that adheres to the oolemma and the thick three-layered chorion. Chorion is formed as a first followed by vitelline envelope. Several features related to the oogenesis and structure of the ovary confirm the hypothesis that tardigrades are the sister group rather for arthropods than for onychophorans.
Collapse
Affiliation(s)
- Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
8
|
Urbisz AZ, Chajec Ł, Ito M, Ito K. The ovary organization in the marine limnodriloidin Thalassodrilides cf. briani (Annelida: Clitellata: Naididae) resembles the ovary of freshwater tubificins. ZOOLOGY 2018; 128:16-26. [DOI: 10.1016/j.zool.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 01/05/2023]
|
9
|
Ovaries of the white worm ( Enchytraeus albidus , Annelida, Clitellata) are composed of 16-celled meroistic germ-line cysts. Dev Biol 2017; 426:28-42. [DOI: 10.1016/j.ydbio.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
|
10
|
|
11
|
Urbisz AZ, Chajec Ł, Świątek P. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components. PLoS One 2015; 10:e0126173. [PMID: 26001069 PMCID: PMC4441386 DOI: 10.1371/journal.pone.0126173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is also made.
Collapse
Affiliation(s)
- Anna Z. Urbisz
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland
| | - Łukasz Chajec
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland
| |
Collapse
|
12
|
|
13
|
Brubacher JL, Vieira AP, Newmark PA. Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy. Nat Protoc 2014; 9:661-73. [PMID: 24556788 DOI: 10.1038/nprot.2014.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The flatworm Schmidtea mediterranea is an emerging model species in fields such as stem cell biology, regeneration and evolutionary biology. Excellent molecular tools have been developed for S. mediterranea, but ultrastructural techniques have received far less attention. Processing specimens for histology and transmission electron microscopy (TEM) is notoriously idiosyncratic for particular species or specimen types. Unfortunately, however, most methods for S. mediterranea described in the literature lack numerous essential details, and those few that do provide them rely on specialized equipment that may not be readily available. Here we present an optimized protocol for ultrastructural preparation of S. mediterranea. The protocol can be completed in 6 d, much of which is 'hands-off' time. To aid with troubleshooting, we also illustrate the major effects of seemingly minor variations in fixative, buffer concentration and dehydration steps. This procedure will be useful for all planarian researchers, particularly those with relatively little experience in tissue processing.
Collapse
Affiliation(s)
- John L Brubacher
- Faculty of Humanities and Sciences, Canadian Mennonite University, Winnipeg, Manitoba, Canada
| | - Ana P Vieira
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Urbisz AZ, Świątek P. Ovary organization and oogenesis in two species of Lumbriculida (Annelida, Clitellata). ZOOLOGY 2013; 116:118-28. [DOI: 10.1016/j.zool.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/16/2012] [Accepted: 10/10/2012] [Indexed: 01/19/2023]
|
15
|
An ultrastructural study of the ovary cord organization and oogenesis in Erpobdella johanssoni (Annelida, Clitellata: Hirudinida). Micron 2013; 44:275-86. [DOI: 10.1016/j.micron.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/18/2012] [Accepted: 07/29/2012] [Indexed: 11/22/2022]
|
16
|
Świątek P, Urbisz AZ, Strużyński W, Płachno BJ, Bielecki A, Cios S, Salonen E, Klag J. Ovary architecture of two branchiobdellid species and Acanthobdella peledina (Annelida, Clitellata). ZOOL ANZ 2012. [DOI: 10.1016/j.jcz.2011.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Brubacher JL, Huebner E. Evolution and development of polarized germ cell cysts: new insights from a polychaete worm, Ophryotrocha labronica. Dev Biol 2011; 357:96-107. [PMID: 21726546 DOI: 10.1016/j.ydbio.2011.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/18/2011] [Accepted: 06/18/2011] [Indexed: 01/17/2023]
Abstract
Polarized oogenic cysts are clonal syncytia of germ cells in which some of the sister cells (cystocytes) differentiate not as oocytes, but instead as nurse cells: polyploid cells that support oocyte development. The intricate machinery required to establish and maintain divergent cell fates within a syncytium, and the importance of associated oocyte patterning for subsequent embryonic development, have made polarized cysts valuable subjects of study in developmental and cell biology. Nurse cell/oocyte specification is best understood in insects, particularly Drosophila melanogaster. However, polarized cysts have evolved independently in several other animal phyla. We describe the differentiation of female cystocytes in an annelid worm, the polychaete Ophryotrocha labronica. These worms are remarkable for their elegantly simple cysts, which comprise a single oocyte and nurse cell, making them an appealing complement to insects as subjects of study. To elucidate the process of cystocyte differentiation in O. labronica, we have constructed digital 3D models from electron micrographs of serially sectioned ovarian tissue. These models show that 2-cell cysts arise by fragmentation of larger "parental" cysts, rather than as independent units. The parental cysts vary in size and organization, are produced by asynchronous, indeterminate mitotic divisions of progenitor cystoblasts, and lack fusome-like organizing organelles. All of these characteristics represent key cytological differences from "typical" cyst development in insects like D. melanogaster. In light of such differences and the plasticity of female cyst structure among other animals, we suggest that it is time to reassess common views on the conservation of oogenic cysts and the importance of cysts in animal oogenesis generally.
Collapse
Affiliation(s)
- John L Brubacher
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | | |
Collapse
|
18
|
ŚWIĄTEK PIOTR, KROK FRANCISZEK, BIELECKI ALEKSANDER. Germ-line cysts are formed during oogenesis inErpobdella octoculata(Annelida, Clitellata, Erpobdellidae). INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2010.9652317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|