1
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Ecay TW, Stewart JR, Khambaty M. Functional complexity in the chorioallantoic membrane of an oviparous snake: Specializations for calcium uptake from the eggshell. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:331-341. [PMID: 35652464 DOI: 10.1002/jez.b.23146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The chorioallantoic membrane of oviparous reptiles forms a vascular interface with the eggshell. The eggshell contains calcium, primarily as calcium carbonate. Extraction and mobilization of this calcium by the chorioallantoic membrane contributes importantly to embryonic nutrition. Development of the chorioallantoic membrane is primarily known from studies of squamates and birds. Although there are pronounced differences in eggshell structure, squamate and bird embryos each mobilize calcium from eggshells. Specialized cells in the chicken chorionic epithelium transport calcium from the eggshell aided by a second population of cells that secrete protons generated by the enzyme carbonic anhydrase. Calcium transporting cells also are present in the chorioallantoic membrane of corn snakes, although these cells function differently than those of chickens. We used histology and immunohistology to characterize the morphology and functional attributes of the chorioallantoic membrane of corn snakes. We identified two populations of cells in the outer layer of the chorionic epithelium. Calbindin-D28K , a cellular marker for calcium transport expressed in squamate chorioallantoic membranes, is localized in large, flattened cells that predominate in the chorionic epithelium. Smaller cells, interspersed among the large cells, express carbonic anhydrase 2, an enzyme not previously localized in the chorionic epithelium of an oviparous squamate. These findings indicate that differentiation of chorionic epithelial cells contributes to extraction and transport of calcium from the eggshell. The presence of specializations of chorioallantoic membranes for calcium uptake from eggshells in chickens and corn snakes suggests that eggshell calcium was a source of embryonic nutrition early in the evolution of Sauropsida.
Collapse
Affiliation(s)
- Tom W Ecay
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson, Tennessee, USA
| | - James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Maleka Khambaty
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson, Tennessee, USA
| |
Collapse
|
3
|
Hernández-Díaz N, Leal F, Ramírez-Pinilla MP. Parallel evolution of placental calcium transfer in the lizard Mabuya and eutherian mammals. J Exp Biol 2021; 224:jeb.237891. [PMID: 33568441 DOI: 10.1242/jeb.237891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
An exceptional case of parallel evolution between lizards and eutherian mammals occurs in the evolution of viviparity. In the lizard genus Mabuya, viviparity provided the environment for the evolution of yolk-reduced eggs and obligate placentotrophy. One major event that favored the evolution of placentation was the reduction of the eggshell. As with all oviparous reptiles, lizard embryos obtain calcium from both the eggshell and egg yolk. Therefore, the loss of the eggshell likely imposes a constraint for the conservation of the egg yolk, which can only be obviated by the evolution of alternative mechanisms for the transport of calcium directly from the mother. The molecular and cellular mechanisms employed to solve these constraints, in a lizard with only a rudimentary eggshell such as Mabuya, are poorly understood. Here, we used RT-qPCR on placental and uterine samples during different stages of gestation in Mabuya, and demonstrate that transcripts of the calcium transporters trpv6, cabp28k, cabp9k and pmca are expressed and gradually increase in abundance through pregnancy stages, reaching their maximum expression when bone mineralization occurs. Furthermore, CABP28K/9K proteins were studied by immunofluorescence, demonstrating expression in specific regions of the mature placenta. Our results indicate that the machinery for calcium transportation in the Mabuya placenta was co-opted from other tissues elsewhere in the vertebrate bodyplan. Thus, the calcium transportation machinery in the placenta of Mabuya evolved in parallel with the mammalian placenta by redeploying the expression of similar calcium transporter genes.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Francisca Leal
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Martha Patricia Ramírez-Pinilla
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
4
|
Blackburn DG, Stewart JR. Morphological research on amniote eggs and embryos: An introduction and historical retrospective. J Morphol 2021; 282:1024-1046. [PMID: 33393149 DOI: 10.1002/jmor.21320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022]
Abstract
Evolution of the terrestrial egg of amniotes (reptiles, birds, and mammals) is often considered to be one of the most significant events in vertebrate history. Presence of an eggshell, fetal membranes, and a sizeable yolk allowed this egg to develop on land and hatch out well-developed, terrestrial offspring. For centuries, morphologically-based studies have provided valuable information about the eggs of amniotes and the embryos that develop from them. This review explores the history of such investigations, as a contribution to this special issue of Journal of Morphology, titled Developmental Morphology and Evolution of Amniote Eggs and Embryos. Anatomically-based investigations are surveyed from the ancient Greeks through the Scientific Revolution, followed by the 19th and early 20th centuries, with a focus on major findings of historical figures who have contributed significantly to our knowledge. Recent research on various aspects of amniote eggs is summarized, including gastrulation, egg shape and eggshell morphology, eggs of Mesozoic dinosaurs, sauropsid yolk sacs, squamate placentation, embryogenesis, and the phylotypic phase of embryonic development. As documented in this review, studies on amniote eggs and embryos have relied heavily on morphological approaches in order to answer functional and evolutionary questions.
Collapse
Affiliation(s)
- Daniel G Blackburn
- Department of Biology and Electron Microscopy Center, Trinity College, Hartford, Connecticut, USA
| | - James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
5
|
Stewart JR. Developmental morphology and evolution of extraembryonic membranes of lizards and snakes (Reptilia, Squamata). J Morphol 2020; 282:973-994. [PMID: 32936974 DOI: 10.1002/jmor.21266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Amniote embryos are supported and nourished by a suite of tissues, the extraembryonic membranes, that provide vascular connections to the egg contents. Oviparous reptiles share a basic pattern of development inherited from a common ancestor; a vascular chorioallantoic membrane, functioning as a respiratory organ, contacts the eggshell and a vascular yolk sac membrane conveys nutrients to the embryo. Squamates (lizards, snakes) have evolved a novel variation in morphogenesis of the yolk sac that results in a unique structure, the yolk cleft/isolated yolk mass complex. This structure is a source of phylogenetic variation in architecture of the extraembryonic membranes among oviparous squamates. The yolk cleft/isolated yolk mass complex is retained in viviparous species and influences placental architecture. The aim of this paper is to review extraembryonic membrane development and morphology in oviparous and related viviparous squamates to explore patterns of variation. The survey includes all oviparous species for which data are available (11 species; 4 families). Comparisons with viviparous species encompass six independent origins of viviparity. The comparisons reveal that both phylogeny and reproductive mode influence variation in extraembryonic membrane development and that phylogenetic variation influences placental evolution. Models of the evolution of squamate placentation have relied primarily on comparisons between independently derived viviparous species. The inclusion of oviparous species in comparative analyses largely supports these models, yet exposes convergent patterns of evolution that become apparent when phylogenetic variation is recognized.
Collapse
Affiliation(s)
- James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
6
|
Stewart JR, Blackburn DG. A developmental synapomorphy of squamate reptiles. Evol Dev 2019; 21:342-353. [DOI: 10.1111/ede.12317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James R. Stewart
- Department of Biological SciencesEast Tennessee State UniversityJohnson City Tennessee 37614
| | | |
Collapse
|
7
|
Novel placental structure in the Mexican gerrhonotine lizard, Mesaspis viridiflava
(Lacertilia; Anguidae). J Morphol 2018; 280:35-49. [DOI: 10.1002/jmor.20912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023]
|
8
|
Ex utero culture of viviparous embryos of the lizard, Zootoca vivipara, provides insights into calcium homeostasis during development. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:63-68. [DOI: 10.1016/j.cbpa.2017.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/24/2022]
|
9
|
Wright AM, Lyons KM, Brandley MC, Hillis DM. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:504-16. [PMID: 26227660 DOI: 10.1002/jez.b.22642] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/09/2015] [Indexed: 01/20/2023]
Abstract
Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were rare. The three putative reversals to oviparity with the strongest phylogenetic support occurred in the snakes Eryx jayakari and Lachesis, and the lizard, Liolaemus calchaqui. Our results emphasize that because the conclusions of ancestral state reconstruction studies are often highly sensitive to the methods and assumptions of analysis, researchers should carefully consider this sensitivity when evaluating alternative hypotheses of character-state evolution.
Collapse
Affiliation(s)
- April M Wright
- Department of Integrative Biology, University of Texas, Austin, Texas
| | - Kathleen M Lyons
- Department of Integrative Biology, University of Texas, Austin, Texas
| | - Matthew C Brandley
- School of Biological Sciences, University of Sydney, Australia.,New York University-Sydney, The Rocks, Australia
| | - David M Hillis
- Department of Integrative Biology, University of Texas, Austin, Texas
| |
Collapse
|
10
|
Blackburn DG, Starck JM. Morphological specializations for fetal maintenance in viviparous vertebrates: An introduction and historical retrospective. J Morphol 2015; 276:E1-16. [DOI: 10.1002/jmor.20410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel G. Blackburn
- Department of Biology; and Electron Microscopy Center; Trinity College; Hartford Connecticut 06106
| | - J. Matthias Starck
- Department of Biology; University of Munich; D-82152 Planegg-Martinsried Germany
| |
Collapse
|
11
|
Stewart JR. Placental specializations in lecithotrophic viviparous squamate reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:549-61. [DOI: 10.1002/jez.b.22632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022]
Affiliation(s)
- James R. Stewart
- Department of Biological Sciences; East Tennessee State University; Johnson City Tennessee 37614
| |
Collapse
|
12
|
Development of yolk sac and chorioallantoic membranes in the Lord Howe Island skink, Oligosoma lichenigerum. J Morphol 2012; 273:1163-84. [DOI: 10.1002/jmor.20052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/30/2012] [Accepted: 05/20/2012] [Indexed: 12/16/2022]
|