1
|
Yap FC, Wong WL, Chong VC, Bong CW, Lim LHS. Development of the muscular and nervous systems during the larval ontogeny of the stalked barnacle, Octolasmis angulata Aurivillius 1894 (Cirripedia: Thoracicalcerea: Poecilasmatidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101298. [PMID: 37672818 DOI: 10.1016/j.asd.2023.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
The advancements in microscopic techniques have stimulated great interest in the muscular and neural architectures of invertebrates, specifically using muscle and neural structures to infer phylogenetic relationships. Here, we provide the data on the development of the muscular and nervous systems during the larval development of stalked barnacle, Octolasmis angulata using the phalloidin F-actin and immunohistochemical labelling (e.g. acetylated α-tubulin and serotonin) and confocal laser scanning microscopy analysis. All naupliar stages shared the same muscle and neural architectures with only the discrepancy in size. The nauplii have a complex muscle arrangement in their feeding apparatus and naupliar appendages. Most naupliar muscles undergo histolyse during the cyprid metamorphosis. The cyprid muscles form beneath the head shield at the end of nauplius VI. The naupliar and cyprid central nervous systems exhibit the typical tripartite brain comprising the protocerebrum, deutocerebrum and tritocerebrum. The serotonin-like immunoreactivity is mainly found in the naupliar brain, mandibular ganglia, cyprid brain and posterior ganglia. Our study revealed that numerous muscle and neural architectures in the naupliar and cyprids have phylogenetic significance, but future studies on the myoanatomy and neuroanatomy of other barnacle species are necessary to determine the homology of these structures.
Collapse
Affiliation(s)
- Fook-Choy Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia; Graduate School, University of Nottingham Malaysia, Jalan Broga, Selangor, 43500, Semenyih, Malaysia
| | - Wey-Lim Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia.
| | - Ving-Ching Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chui-Wei Bong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lee-Hong Susan Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Fritsch M, Richter S. How body patterning might have worked in the evolution of arthropods-A case study of the mystacocarid Derocheilocaris remanei (Crustacea, Oligostraca). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:342-359. [PMID: 35486026 DOI: 10.1002/jez.b.23140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Body organization within arthropods is enormously diverse, but a fusion of segments into "functional groups" (tagmatization) is found in all species. Within Tetraconata/Pancrustacea, an anterior head, a locomotory thorax region, and a posterior, mostly limbless tagma known as the abdomen is present. The posterior-most tagma in crustaceans is frequently confused with the malacostracan, for example, decapod pleon often misleadingly termed abdomen, however, its evolutionary and developmental origin continues to pose a riddle, especially the completely limbless abdomen of the "entomostracan morphotype" (e.g., fairy shrimps). Since the discovery of Hox genes and their involvement in specifying the morphology or identity of segments, tagmata, or regions along the anteroposterior axis of an organism, only a few studies have focused on model organisms representing the "entomostracan morphotype" and used a variety of dedicated Hox genes and their transcription products to shine light on abdomen formation. The homeotic genes or the molecular processes that determine the identity of the entomostracan abdomen remain unknown to date. This study focuses on the "entomostracan morphotype" representative Derocheilocaris remanei (Mystacocarida). We present a complete overview of development throughout larval stages and investigate homeotic gene expression data using the antibody FP6.87 that binds specifically to epitopes of Ultrabithorax/Abdominal-A proteins. Our results suggest that the abdomen in Mystacocarida is bipartite (abdomen I + abdomen II). We suggest that the limbless abdomen is an evolutionary novelty that evolved several times independently within crustaceans and which might be the result of a progressive reduction of former thoracic segments into abdominal segments.
Collapse
Affiliation(s)
- Martin Fritsch
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany
| | - Stefan Richter
- Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| |
Collapse
|
3
|
Developmental and Functional Morphology of Eulimnadia braueriana Ishikawa, 1895 (Branchiopoda: Spinicaudata) Feeding Structures: Combination of Filtering and Scraping Feeding Mechanisms. Zool Stud 2020; 59:e35. [PMID: 33262857 DOI: 10.6620/zs.2020.59-35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/20/2020] [Indexed: 11/18/2022]
Abstract
Large branchiopods inhabit diverse continental habitats worldwide. Their feeding ecology, nevertheless, remains largely unknown. The few functional morphology studies that have been conducted have mostly focused on adults or larvae, seldom have the two been compared collectively. In this study, we examined the feeding structures in Eulimnadia braueriana Ishikawa, 1895 from nauplius to adult to clarify their feeding mechanisms and then compared them with the other two sympatric branchiopods (Branchinella kugenumaensis and Lynceus biformis) in Siangtian Pond, Taiwan. Naupliar second antennae and mandibles are similar to those of other species, suggesting filter-feeding. The naupliar feeding structures, including the mandibular palp and naupliar process, gradually degenerate during the juvenile stage. Simultaneously, the molar surface, maxillae, and second antennae continue developing, reaching their adult form in later juvenile substages. The molar surface and thoracopod setal morphology are similar to those of other filter-feeding branchiopods, but adults also have scraping setae on the first several thoracopod pairs. Nearly all naupliar primary feeding structures change through development, particularly during the early juvenile substages, whereas late juvenile substages and adult morphology are similar. Eulimnadia braueriana transforms from pelagic filtering nauplii to adults that combine benthic filtering and scraping. Comparisons of molar and thoracopod morphology between coexisting branchiopod species show some similarities and differences in filtering and scraping feeding structures, implying potential foraging resource differentiation among species.
Collapse
|
4
|
Stojanović DZ, Vujić VD, Lučić LR, Tomić VT, Makarov SE, Mitić BM. Life after the mother's hug: Late post-embryonic development of Cryptops parisi (Chilopoda: Scolopendromorpha: Cryptopidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100948. [PMID: 32416473 DOI: 10.1016/j.asd.2020.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Here we describe in detail the late post-embryonic development of the common European scolopendromorph centipede Cryptops parisi. Canonical variate analyses of two groups of external morphological characters, viz., cephalic capsule characters (head length, length of the anterior and posterior paramedian cephalic sutures) and coxopleuron surface characters (number of pores in the coxal pore-field, number of setae on the posterior coxopleuron edge, their number on the coxal pore-field, and their number posterior to the coxal pore-field) were conducted on a large sample of specimens collected from two localities in Serbia. Ten free-living stages are recognized: three pre-adult stages (adolescens I, II, and III) and seven adult stages (one maturus junior stage, four maturus, and two maturus senior stages). The fourth late post-embryonic stage is the first mature stage in both sexes. Sexual dimorphism in the aforementioned characters was not observed. Morphological variation of coxopleuron characters was more informative for the discrimination of developmental stages in Cryptops than the morphological variation of cephalic capsule characters.
Collapse
Affiliation(s)
- Dalibor Z Stojanović
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Vukica D Vujić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Luka R Lučić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Vladimir T Tomić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Slobodan E Makarov
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Bojan M Mitić
- University of Belgrade - Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
5
|
Frase T, Richter S. The brain and the corresponding sense organs in calanoid copepods - Evidence of vestiges of compound eyes. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 54:100902. [PMID: 31991325 DOI: 10.1016/j.asd.2019.100902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Copepoda is one of the crustacean taxa with still unresolved phylogenetic relationships within Tetraconata. Recent phylogenomic studies place them close to Malacostraca and Cirripedia. Little is known about the morphological details of the copepod nervous system, and the available data are sometimes contradictory. We investigated several representatives of the subgroup Calanoida using immunohistochemical labeling against alpha-tubulin and various neuroactive substances, combining this with confocal laser scanning analysis and 3D reconstruction. Our results show that the studied copepods exhibit only a single anterior protocerebral neuropil which is connected to the nerves of two protocerebral sense organs: the frontal filament organ and a photoreceptor known as the Gicklhorn's organ. We suggest, on the basis of its position and the innervation it provides, that Gicklhorn's organ is homologous to the compound eye in arthropods. With regard to the frontal filament organ, we reveal detailed innervation to the lateral protocerebrum and the appearance of spherical bodies that stain intensely against alpha tubulin. A potential homology of these bodies to the onion bodies in malacostacan crustaceans and in Mystacocarida is suggested. The nauplius eye in all the examined calanoids shows the same basic pattern of innervation with the middle cup sending its neurites into the median nerve, while the axons of the lateral cups proceed into both the median and the lateral nerves. The early development of the axonal scaffold of the nauplius eye neuropil from the proximal parts of the nauplius eye nerves follows the same pattern as in other crustaceans. In our view, this specific innervation pattern is a further feature supporting the homology of the nauplius eye in crustaceans.
Collapse
Affiliation(s)
- Thomas Frase
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055, Rostock, Germany.
| | - Stefan Richter
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055, Rostock, Germany
| |
Collapse
|
6
|
Chen X, Ortega-Hernández J, Wolfe JM, Zhai D, Hou X, Chen A, Mai H, Liu Y. The appendicular morphology of Sinoburius lunaris and the evolution of the artiopodan clade Xandarellida (Euarthropoda, early Cambrian) from South China. BMC Evol Biol 2019; 19:165. [PMID: 31387545 PMCID: PMC6685191 DOI: 10.1186/s12862-019-1491-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/29/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Artiopodan euarthropods represent common and abundant faunal components in sites with exceptional preservation during the Cambrian. The Chengjiang biota in South China contains numerous taxa that are exclusively known from this deposit, and thus offer a unique perspective on euarthropod diversity during the early Cambrian. One such endemic taxon is the non-trilobite artiopodan Sinoburius lunaris, which has been known for approximately three decades, but few details of its anatomy are well understood due to its rarity within the Chengjiang, as well as technical limitations for the study of these fossils. Furthermore, the available material does not provide clear information on the ventral organization of this animal, obscuring our understanding of phylogenetically significant details such as the appendages. RESULTS We employed X-ray computed tomography to study the non-biomineralized morphology of Sinoburius lunaris. Due to the replacement of the delicate anatomy with pyrite typical of Chengjiang fossils, computed tomography reveals substantial details of the ventral anatomy of Sinoburius lunaris, and allow us to observe in detail the three-dimensionally preserved appendicular organization of this taxon for the first time. The dorsal exoskeleton consists of a crescent-shaped head shield with well-developed genal spines, a thorax with seven freely articulating tergites, and a fused pygidium with lateral and median spines. The head bears a pair of ventral stalked eyes that are accommodated by dorsal exoskeletal bulges, and an oval elongate ventral hypostome. The appendicular organization of the head is unique among Artiopoda. The deutocerebral antennae are reduced, consisting of only five podomeres, and bear an antennal scale on the second podomere that most likely represents an exite rather than a true ramus. The head includes four post-antennal biramous limb pairs. The first two biramous appendages are differentiated from the rest. The first appendage pair consists of a greatly reduced endopod coupled with a greatly elongated exopod with a potentially sensorial function. The second appendage pair carries a more conventionally sized endopod, but also has an enlarged exopod. The remaining biramous appendages are homonomous in their construction, but decrease in size towards the posterior end of the body. They consist of a basipodite with ridge-like crescentic endites, an endopod with seven podomeres and a terminal claw, and a lamellae-bearing exopod with a slender shaft. Contrary to previous reports, we confirm the presence of segmental mismatch in Sinoburius lunaris, expressed as diplotergites in the thorax. Maximum parsimony and Bayesian phylogenetic analyses support the monophyly of Xandarellida within Artiopoda, and illuminate the internal relationships within this enigmatic clade. Our results allow us to propose a transformation series explaining the origin of archetypical xandarellid characters, such as the evolution of eye slits in Xandarella spectaculum and Phytophilaspis pergamena as derivates from the anterolateral notches in the head shield observed in Cindarella eucalla and Luohuilinella species. In this context, Sinoburius lunaris is found to feature several derived characters within the group, such as the secondary loss of eye slits and a high degree of appendicular tagmosis. Contrary to previous findings, our analyses strongly support close affinities between Sinoburius lunaris, Xandarella spectaculum and Phytophilaspis pergamena, although the precise relationships between these taxa are sensitive to different methodologies. CONCLUSIONS The revised morphology of Sinoburius lunaris, made possible through the use of computed tomography to resolve details of its three-dimensionally preserved appendicular anatomy, contributes towards an improved understanding of the morphology of this taxon and the evolution of Xandarellida more broadly. Our results indicate that Sinoburius lunaris possesses an unprecedented degree of appendicular tagmosis otherwise unknown within Artiopoda, with the implication that this iconic group of Palaeozoic euarthropods likely had a more complex ecology and functional morphology than previously considered. The application of computer tomographic techniques to the study of Chengjiang euarthropods holds exceptional promise for understanding the morphological diversity of these organisms, and also better reconstructing their phylogenetic relationships and evolutionary history.
Collapse
Affiliation(s)
- Xiaohan Chen
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Ailin Chen
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China.
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
7
|
Boikova OS. The Origin of Cladocera (Crustacea, Branchiopoda): A New Understanding of an Old Hypothesis. BIOL BULL+ 2018. [DOI: 10.1134/s1062359017070044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|
9
|
Frase T, Richter S. Nervous system development in the fairy shrimpBranchinellasp. (Crustacea: Branchiopoda: Anostraca): Insights into the development and evolution of the branchiopod brain and its sensory organs. J Morphol 2016; 277:1423-1446. [DOI: 10.1002/jmor.20585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/22/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Frase
- Universität Rostock, Institut für Biowissensschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; D-18055 Rostock Germany
| | - Stefan Richter
- Universität Rostock, Institut für Biowissensschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; D-18055 Rostock Germany
| |
Collapse
|
10
|
Fritsch M, Richter S. How the cladoceran heterogonic life cycle evolved-insights from gamogenetic reproduction and direct development in Cyclestherida. Evol Dev 2015; 17:356-66. [DOI: 10.1111/ede.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Fritsch
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften; Universität Rostock; Germany
| | - Stefan Richter
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften; Universität Rostock; Germany
| |
Collapse
|
11
|
Neuroanatomy of the optic ganglia and central brain of the water flea Daphnia magna (Crustacea, Cladocera). Cell Tissue Res 2015; 363:649-77. [DOI: 10.1007/s00441-015-2279-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
12
|
Brenneis G, Scholtz G. Serotonin-immunoreactivity in the ventral nerve cord of Pycnogonida--support for individually identifiable neurons as ancestral feature of the arthropod nervous system. BMC Evol Biol 2015; 15:136. [PMID: 26156705 PMCID: PMC4496856 DOI: 10.1186/s12862-015-0422-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The arthropod ventral nerve cord features a comparably low number of serotonin-immunoreactive neurons, occurring in segmentally repeated arrays. In different crustaceans and hexapods, these neurons have been individually identified and even inter-specifically homologized, based on their soma positions and neurite morphologies. Stereotypic sets of serotonin-immunoreactive neurons are also present in myriapods, whereas in the investigated chelicerates segmental neuron clusters with higher and variable cell numbers have been reported. This led to the suggestion that individually identifiable serotonin-immunoreactive neurons are an apomorphic feature of the Mandibulata. To test the validity of this neurophylogenetic hypothesis, we studied serotonin-immunoreactivity in three species of Pycnogonida (sea spiders). This group of marine arthropods is nowadays most plausibly resolved as sister group to all other extant chelicerates, rendering its investigation crucial for a reliable reconstruction of arthropod nervous system evolution. RESULTS In all three investigated pycnogonids, the ventral walking leg ganglia contain different types of serotonin-immunoreactive neurons, the somata of which occurring mostly singly or in pairs within the ganglionic cortex. Several of these neurons are readily and consistently identifiable due to their stereotypic soma position and characteristic neurite morphology. They can be clearly homologized across different ganglia and different specimens as well as across the three species. Based on these homologous neurons, we reconstruct for their last common ancestor (presumably the pycnogonid stem species) a minimal repertoire of at least seven identified serotonin-immunoreactive neurons per hemiganglion. Beyond that, each studied species features specific pattern variations, which include also some neurons that were not reliably labeled in all specimens. CONCLUSIONS Our results unequivocally demonstrate the presence of individually identifiable serotonin-immunoreactive neurons in the pycnogonid ventral nerve cord. Accordingly, the validity of this neuroanatomical feature as apomorphy of Mandibulata is questioned and we suggest it to be ancestral for arthropods instead. The pronounced disparities between the segmental pattern in pycnogonids and the one of studied euchelicerates call for denser sampling within the latter taxon. By contrast, overall similarities between the pycnogonid and myriapod patterns may be indicative of single cell homologies in these two taxa. This notion awaits further substantiation from future studies.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, 10115, Berlin, Germany.
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
13
|
Development of the nervous system in Cephalocarida (Crustacea): early neuronal differentiation and successive patterning. ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-014-0248-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolff C. Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. EvoDevo 2014; 5:12. [PMID: 24641948 PMCID: PMC4108089 DOI: 10.1186/2041-9139-5-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background Crustaceans of the genus Daphnia are one of the oldest model organisms in ecotoxicology, ecology and evolutionary biology. The publication of the Daphnia pulex genome has facilitated the development of genetic tools to answer long-standing questions in these research fields (Science 331: 555-561, 2011). A particular focus is laid on understanding the genetic basis of the striking ability of daphnids to change their phenotype in response to environmental stressors. Furthermore, Daphnia have recently been developed into crustacean model organisms for EvoDevo research, contributing to the ongoing attempt to resolve arthropod phylogeny. These problems require the comparative analyses of gene expression and functional data, which in turn require a standardized developmental staging system for Daphnia. Results Here we provide a detailed staging system of the embryonic development of Daphnia magna based on morphological landmarks. The staging system does not rely on developmental hours and is therefore suitable for functional and ecological experiments, which often cause developmental delays in affected embryos and thus shifts in time reference points. We provide a detailed description of each stage and include schematic drawings of all stages showing relevant morphological landmarks in order to facilitate the application of this staging scheme. Conclusion We present here a staging system for Daphnia magna, which is based on morphological landmarks. The staging system can be adopted for other daphnids with minor variations since the sequence of development is highly conserved during early stages and only minor heterochronic shifts occur in late embryonic stages.
Collapse
Affiliation(s)
- Beate Mittmann
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie III, Neurogenetik, Lab, 5006, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
16
|
Stegner ME, Brenneis G, Richter S. The ventral nerve cord in Cephalocarida (Crustacea): New insights into the ground pattern of Tetraconata. J Morphol 2013; 275:269-94. [DOI: 10.1002/jmor.20213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Martin E.J. Stegner
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| |
Collapse
|
17
|
Fritsch M, Bininda-Emonds ORP, Richter S. Unraveling the origin of Cladocera by identifying heterochrony in the developmental sequences of Branchiopoda. Front Zool 2013; 10:35. [PMID: 23777384 PMCID: PMC3716531 DOI: 10.1186/1742-9994-10-35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/31/2013] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION One of the most interesting riddles within crustaceans is the origin of Cladocera (water fleas). Cladocerans are morphologically diverse and in terms of size and body segmentation differ considerably from other branchiopod taxa (Anostraca, Notostraca, Laevicaudata, Spinicaudata and Cyclestherida). In 1876, the famous zoologist Carl Claus proposed with regard to their origin that cladocerans might have evolved from a precociously maturing larva of a clam shrimp-like ancestor which was able to reproduce at this early stage of development. In order to shed light on this shift in organogenesis and to identify (potential) changes in the chronology of development (heterochrony), we investigated the external and internal development of the ctenopod Penilia avirostris and compared it to development in representatives of Anostraca, Notostraca, Laevicaudata, Spinicaudata and Cyclestherida. The development of the nervous system was investigated using immunohistochemical labeling and confocal microscopy. External morphological development was followed using a scanning electron microscope and confocal microscopy to detect the autofluorescence of the external cuticle. RESULTS In Anostraca, Notostraca, Laevicaudata and Spinicaudata development is indirect and a free-swimming nauplius hatches from resting eggs. In contrast, development in Cyclestherida and Cladocera, in which non-swimming embryo-like larvae hatch from subitaneous eggs (without a resting phase) is defined herein as pseudo-direct and differs considerably from that of the other groups. Both external and internal development in Anostraca, Notostraca, Laevicaudata and Spinicaudata is directed from anterior to posterior, whereas in Cyclestherida and Cladocera differentiation is more synchronous. CONCLUSIONS In this study, developmental sequences from representatives of all branchiopod taxa are compared and analyzed using a Parsimov event-pairing approach. The analysis reveals clear evolutionary transformations towards Cladocera and the node of Cladoceromorpha which correspond to distinct heterochronous signals and indicate that the evolution of Cladocera was a stepwise process. A switch from a strategy of indirect development to one of pseudo-direct development was followed by a shift in a number of morphological events to an earlier point in ontogenesis and simultaneously by a reduction in the number of pre-metamorphosis molts. A compression of the larval phase as well as a shortening of the juvenile phase finally leads to a precocious maturation and is considered as a gradual progenetic process.
Collapse
Affiliation(s)
- Martin Fritsch
- Lehrstuhl für Allgemeine und Spezielle Zoologie, University of Rostock, Universitaetsplatz 2, 18055 Rostock, Germany
| | - Olaf RP Bininda-Emonds
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), AG Systematik und Evolutionsbiologie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Str. 9-11, 26111, Oldenburg, Germany
| | - Stefan Richter
- Lehrstuhl für Allgemeine und Spezielle Zoologie, University of Rostock, Universitaetsplatz 2, 18055 Rostock, Germany
| |
Collapse
|
18
|
Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 2013; 13:119. [PMID: 23758940 PMCID: PMC3687579 DOI: 10.1186/1471-2148-13-119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. Results The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. Conclusions The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal’s trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda.
Collapse
|
19
|
Schwentner M, Clavier S, Fritsch M, Olesen J, Padhye S, Timms BV, Richter S. Cyclestheria hislopi (Crustacea: Branchiopoda): a group of morphologically cryptic species with origins in the Cretaceous. Mol Phylogenet Evol 2012. [PMID: 23178560 DOI: 10.1016/j.ympev.2012.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclestheria hislopi is thought to be the only extant species of Cyclestherida. It is the sister taxon of all Cladocera and displays morphological characteristics intermediate of Spinicaudata and Cladocera. Using one mitochondrial (COI) and two nuclear (EF1α and 28S rRNA) markers, we tested the hypothesis that C. hislopi represents a single circumtropic species. South American (French Guiana), Asian (India, Indonesia, Singapore) and several Australian populations were included in our investigation. Phylogenetic and genetic distance analyses revealed remarkable intercontinental genetic differentiation (uncorrected p-distances COI>13%, EF1α>3% and 28S>4%). Each continent was found to have at least one distinct Cyclestheria species, with Australia boasting four distinct main lineages which may be attributed to two to three species. The divergence of these species (constituting crown group Cyclestherida) was, on the basis of phylogenetic analyses of COI and EF1α combined with molecular clock estimates using several fossil branchiopod calibration points or a COI substitution rate of 1.4% per million years, dated to the Cretaceous. This was when the South American lineage split from the Asian-Australian lineage, with the latter diverging further in the Paleogene. Today's circumtropic distribution of Cyclestheria may be best explained by a combination of Gondwana vicariance and later dispersal across Asia and Australia when the tectonic plates of the two continents drew closer in the early Miocene. The lack of morphological differentiation that has taken place in this taxon over such a long evolutionary period contrasts with the high level of differentiation and diversification observed in its sister taxon the Cladocera. Further insights into the evolution of Cyclestheria may help us to understand the evolutionary success of the Cladocera.
Collapse
Affiliation(s)
- Martin Schwentner
- Universität Rostock, Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universitätsplatz 2, 18055 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Fritsch M, Kaji T, Olesen J, Richter S. The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-012-0173-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|