1
|
The Autophagy-Related Organelle Autophagoproteasome Is Suppressed within Ischemic Penumbra. Int J Mol Sci 2021; 22:ijms221910364. [PMID: 34638703 PMCID: PMC8508911 DOI: 10.3390/ijms221910364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
The peri-infarct region, which surrounds the irreversible ischemic stroke area is named ischemic penumbra. This term emphasizes the borderline conditions for neurons placed within such a critical region. Area penumbra separates the ischemic core, where frank cell loss occurs, from the surrounding healthy brain tissue. Within such a brain region, nervous matter, and mostly neurons are impaired concerning metabolic conditions. The classic biochemical marker, which reliably marks area penumbra is the over-expression of the heat shock protein 70 (HSP70). However, other proteins related to cell clearing pathways are modified within area penumbra. Among these, autophagy proteins like LC3 increase in a way, which recapitulates Hsp70. In contrast, components, such as P20S, markedly decrease. Despite apparent discrepancies, the present study indicates remarkable overlapping between LC3 and P20S redistribution within area penumbra. In fact, the amount of both proteins is markedly reduced within vacuoles. Specifically, a massive loss of LC3 + P20S immuno-positive vacuoles (autophagoproteasomes) is reported here. This represents the most relevant sub-cellular alteration here described in cell clearing pathways within area penumbra. The functional significance of these findings remains to be determined and it will take a novel experimental stream to decipher the fine-tuning of such a phenomenon.
Collapse
|
2
|
Cavaleiro FI, Frade DG, Rangel LF, Santos MJ. Syndesmis François, 1886 (Rhabdocoela: Umagillidae): a revisitation, with a synopsis and an identification key to species, and new molecular evidence for ascertaining the phylogeny of the group. Syst Parasitol 2018; 95:147-171. [PMID: 29423772 DOI: 10.1007/s11230-018-9781-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/20/2018] [Indexed: 01/04/2023]
Abstract
Syndesmis François, 1886 is a genus of umagillid turbellarians comprising species which are typically endosymbionts of echinoids, i.e. sea urchins. This group is likely key in addressing the issue of transition between a free-living and a parasitic mode of life in the Platyhelminthes. Accordingly, its phylogeny should be considered for detailed analysis, namely by addressing molecular evidence for its different species. At the present time, a revisitation of Syndesmis is required and fully justified by the following lines of argument: (i) the body of knowledge on Syndesmis is large, but the information is scattered through many different works in the literature; (ii) for about 60 years, it was a common practice to assign the umagillids isolated from sea urchins as a single species, i.e. the type-species, Syndesmis echinorum François, 1886, which was later split into several species on morphological grounds; and (iii) the type-species - for which no molecular information is available - was redescribed and new species were described in recent years but the generic diagnosis of Syndesmis was not emended accordingly. The present state of art additionally justifies the necessity of (i) an updated synopsis of species and (ii) an identification key to the 26 species described from different hosts and geographical locations. All these aspects define the aims of the present study. It is proposed that S. antillarum is attributed to Stunkard & Corliss (1951) and not to Powers (1936).
Collapse
Affiliation(s)
- Francisca I Cavaleiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007, Porto, Portugal.
| | - Duarte G Frade
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Luís F Rangel
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Maria J Santos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007, Porto, Portugal
| |
Collapse
|
3
|
Yoneva A, Scholz T, Bruňanská M, Kuchta R. Vitellogenesis of diphyllobothriidean cestodes (Platyhelminthes). C R Biol 2015; 338:169-79. [PMID: 25641503 DOI: 10.1016/j.crvi.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 01/09/2023]
Abstract
The recently erected cestode order Diphyllobothriidea is unique among all tapeworm orders in that its species infect all major groups of tetrapods, including man. In the present paper, the vitellogenesis of representatives of all three currently recognized families of this order was evaluated, based on ultrastructural (transmission electron microscopy) and cytochemical (detection of glycogen) observations. Vitelline follicles of all taxa studied, i.e. Cephalochlamys namaquensis from clawed frogs (Xenopus), Duthiersia expansa from monitors (Varanus) and Schistocephalus solidus that matures in fish-eating birds, contain vitelline cells at various stages of development and interstitial cells. Developing vitellocytes are characterized by the presence of mitochondria, granular endoplasmic reticulum and Golgi complexes involved in the synthesis of shell globules and formation of shell globule clusters. Mature vitellocytes contain lipids and glycogen in different proportions. The most significant differences among the three diphyllobothriidean families were found in the presence or absence of lamellar bodies. Variations of vitelline clusters morphology and types of lipid droplets are described and discussed in relation to the presumed evolutionary history of diphyllobothriideans, which belong to the most basal cestode groups.
Collapse
Affiliation(s)
- Aneta Yoneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2, Gagarin Street, 1113 Sofia, Bulgaria; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Magdaléna Bruňanská
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|