1
|
Soliz MC, Abdala V. Musculoskeletal and tendinous details of selected anomalies in the locomotor system of anurans. Anat Rec (Hoboken) 2024; 307:3282-3305. [PMID: 38529857 DOI: 10.1002/ar.25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Previous studies on anuran anomalies predominantly examine isolated cases or focus on external and skeletal features. Our study analyzes a comprehensive sample collected from 1991 to 2017, examining the muscle-tendon system in 24 anuran species across adult, juvenile, and metamorphic stages. This extensive sample size allows us to investigate consistent anomaly patterns across different developmental stages and anuran families, exploring potential common developmental or genetic factors. Our detailed anatomical examination, encompassing musculature, tendons, and skeletal structures, revealed that 21% of the specimens displayed anomalies, a noteworthy finding considering the extensive sample size and duration of the studied sample. Of these anomalies, 17% affected the locomotor system, predominantly in the upper limbs. Key anomalies included, forelimbs and hindlimbs brachydactyly, rotation in forelimbs, partial kyphotic lordosis, and scoliosis. Notably, the digit 4 in the forelimbs and digits 4 and 5 in the hindlimbs were particularly susceptible to teratogenic effects, indicating possible prolonged exposure during development. Our study also uncovered combinations of anomalies and identified a phenotype similar to Poland syndrome. The findings validate the "Logic of Monsters" (LoMo theory) by Alberch, although the name itself may not be deemed appropriate, showing that developmental disruptions in tetrapods are not random but follow distinct sequences and patterns. The name, while unfortunate, accurately reflects the unusual nature of these developmental anomalies. This contributes to the evolving "Evo-Devo-Path" framework, highlighting the study's importance in understanding developmental disruptions in tetrapods.
Collapse
Affiliation(s)
- Mónica C Soliz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología General, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
2
|
Kohlsdorf T. Reversibility of digit loss revisited: Limb diversification in Bachia lizards (gymnophthalmidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:496-508. [PMID: 33544406 DOI: 10.1002/jez.b.23024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023]
Abstract
Strict interpretations of the Dollo's Law lead to postulation that trait loss is irreversible and organisms never recover ancestral phenotypes. Dollo, however, admitted the possibility of reversals in trait loss when predicted differences between reversed (derived) and ancestral forms. Phenotypic signatures from reversals are expected, as the historical context of a reversal in trait loss differs from the initial setting where the trait originally evolved. This article combines morphological and molecular information for Bachia scolecoides to discuss phenotypic and genetic patterns established during processes that reversed digit loss in Gymnophthalmidae (also termed microteiid lizards). Results suggest that pathways leading to the derived tetradactyl state of B. scolecoides comprise particularities in their origin and associated processes. Autopodial bones of B. scolecoides lack digit identity, and muscle anatomy is very similar between manus and pes. Gymnophthalmidae sequence patterns in the limb-specific sonic hedgehog enhancer (ZRS) suggest that regulation of shh expression did not degenerate in Bachia, given the prediction of similar motifs despite mutations specific to Bachia. Persistence of developmental mechanisms might explain intermittent character expression leading to reversals of digit loss, as ZRS signaling pathways remain active during the development of at least one pair of appendices in Bachia, especially if some precursors persisted at early stages. Patterns of ZRS sequences suggest that irreversibility of trait loss might be lineage-specific (restricted to Gymnophthalmini) and contingent to the type of signature established. These results provide insights regarding possible mechanisms that may allow reactivation of developmental programs in specific regions of the embryo.
Collapse
Affiliation(s)
- Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Tran MP, Tsutsumi R, Erberich JM, Chen KD, Flores MD, Cooper KL. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. eLife 2019; 8:50645. [PMID: 31612857 PMCID: PMC6855805 DOI: 10.7554/elife.50645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Many species that run or leap across sparsely vegetated habitats, including horses and deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber loss, countering well-supported assumptions of developmental tissue remodeling. We instead see hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of muscle, which remodeled foot anatomy during evolution and development, involves cellular mechanisms that are typically associated with disease or injury. Intrinsic muscles are a group of muscles deep inside the hands and feet. They help to control the precise movements required, for example, for a pianist to play their instrument or for certain animals to climb with remarkable agility. Some animals, such as horses and deer, have evolved in such a way that they no longer grasp objects with hands and feet. Where intrinsic muscles were once present in the hands and feet of their ancestors, these animals now have strong ligaments that prevent over-extension of the wrist and ankle joints during hard landings. Given their size, it is difficult to study horses and deer in the laboratory and understand how they lost their intrinsic muscles during evolution. Tran et al. therefore focused on a small rodent called the lesser Egyptian jerboa, which also displays long legs with strong ligaments and no intrinsic muscles. Newborn jerboas have foot muscles that look very much like the intrinsic muscles found in mice, but these muscles disappear within 4 days of birth. A mechanism called programmed cell death is often responsible for specific tissues disappearing during development, but the experiments of Tran et al. revealed that this was not the case in jerboas. Instead, their intrinsic muscles were degraded by processes triggered by genes that disassemble underused muscles. In mice and humans, fasting, nerve injuries, or immobility trigger this type of muscle degradation, but in jerboas these processes appear to be a normal part of development. This unexpected discovery shows that development and disease-like processes are linked, and that more studies of nontraditional research animals may help scientists better understand these connections.
Collapse
Affiliation(s)
- Mai P Tran
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rio Tsutsumi
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Michelle D Flores
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
4
|
Westphal N, Mahlow K, Head JJ, Müller J. Pectoral myology of limb-reduced worm lizards (Squamata, Amphisbaenia) suggests decoupling of the musculoskeletal system during the evolution of body elongation. BMC Evol Biol 2019; 19:16. [PMID: 30630409 PMCID: PMC6329177 DOI: 10.1186/s12862-018-1303-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023] Open
Abstract
Background The evolution of elongated body forms in tetrapods has a strong influence on the musculoskeletal system, including the reduction of pelvic and pectoral girdles, as well as the limbs. However, despite extensive research in this area it still remains unknown how muscles within and around bony girdles are affected by these reductions. Here we investigate this issue using fossorial amphisbaenian reptiles, or worm lizards, as a model system, which show substantial variation in the degree of reductions of girdles and limbs. Using iodine-based contrast-enhanced computed tomography (diceCT), we analyze the composition of the shoulder muscles of the main clades of Amphisbaenia and their outgroups relative to the pectoral skeleton. Results All investigated amphisbaenian taxa retain the full set of 17 shoulder muscles, independent of the degree of limb and girdle reductions, whereas in some cases muscles are fused to complexes or changed in morphology relative to the ancestral condition. Bipes is the only taxon that retains forelimbs and an almost complete pectoral girdle. All other amphisbaenian families show more variation concerning the completeness of the pectoral girdle having reduced or absent girdle elements. Rhineura, which undergoes the most severe bone reductions, differs from all other taxa in possessing elongated muscle strands instead of discrete shoulder muscles. In all investigated amphisbaenians, the shoulder muscle agglomerate is shortened and shifted anteriorly relative to the ancestral position as seen in the outgroups. Conclusions Our results show that pectoral muscle anatomy does not necessarily correspond to the loss or reduction of bones, indicating a decoupling of the musculoskeletal system. Muscle attachment sites change from bones to non-skeletal areas, such as surrounding muscles, skin or connective tissue, whereas muscle origins themselves remain in the same region where the pectoral bones were ancestrally located. Our findings indicate a high degree of developmental autonomy within the musculoskeletal system, we predict that the observed evolutionary rearrangements of amphisbaenian shoulder muscles were driven by functional demands rather than by developmental constraints. Nevertheless, worm lizards display a spatial offset of both pectoral bones and muscles relative to the ancestral position, indicating severe developmental modifications of the amphisbaenian body axis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1303-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natascha Westphal
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115, Berlin, Germany.
| | - Kristin Mahlow
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115, Berlin, Germany
| | - Jason James Head
- Department of Zoology and University Museum of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Johannes Müller
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 43, 10115, Berlin, Germany
| |
Collapse
|
5
|
Wagner GP, Griffith OW, Bergmann PJ, Bello‐Hellegouarch G, Kohlsdorf T, Bhullar A, Siler CD. Are there general laws for digit evolution in squamates? The loss and re‐evolution of digits in a clade of fossorial lizards (
Brachymeles
, Scincinae). J Morphol 2018; 279:1104-1119. [DOI: 10.1002/jmor.20834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Günter P. Wagner
- Department of Ecology and Evolutionary BiologyYale UniversityNew Haven Connecticut
- Yale Systems Biology Institute, Yale UniversityWest Haven Connecticut
- Department of Obstetrics, Gynecology and Reproductive SciencesYale Medical SchoolNew Haven Connecticut
- Department of Obstetrics and GynecologyWayne State UniversityDetroit Michigan
- Yale Peabody Museum of Natural History, Yale UniversityNew Haven Connecticut
| | - Oliver W. Griffith
- Department of Ecology and Evolutionary BiologyYale UniversityNew Haven Connecticut
- Yale Systems Biology Institute, Yale UniversityWest Haven Connecticut
| | | | - Gaelle Bello‐Hellegouarch
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto São Paulo Brazil
| | - Tiana Kohlsdorf
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto São Paulo Brazil
| | - Anjan Bhullar
- Department of Geology and GeophysicsYale UniversityNew Haven Connecticut
| | - Cameron D. Siler
- Department of Biology and Sam Noble MuseumUniversity of OklahomaNorman Oklahoma
| |
Collapse
|
6
|
Burch SH. Myology of the forelimb of Majungasaurus crenatissimus (Theropoda, Abelisauridae) and the morphological consequences of extreme limb reduction. J Anat 2017; 231:515-531. [PMID: 28762500 DOI: 10.1111/joa.12660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Forelimb reduction occurred independently in multiple lineages of theropod dinosaurs. Although tyrannosaurs are renowned for their tiny, two-fingered forelimbs, the degree of their reduction in length is surpassed by abelisaurids, which possess an unusual morphology distinct from that of other theropods. The forelimbs of abelisaurids are short but robust and exhibit numerous crests, tubercles, and scars that allow for inferences of muscle attachment sites. Phylogenetically based reconstructions of the musculature were used in combination with close examination of the osteology in the Malagasy abelisaurid Majungasaurus to create detailed muscle maps of the forelimbs, and patterns of the muscular and bony morphology were compared with those of extant tetrapods with reduced or vestigial limbs. The lever arms of muscles crossing the glenohumeral joint are shortened relative to the basal condition, reducing the torque of these muscles but increasing the excursion of the humerus. Fusion of the antebrachial muscles into a set of flexors and extensors is common in other tetrapods and occurred to some extent in Majungasaurus. However, the presence of tubercles on the antebrachial and manual elements of abelisaurids indicates that many of the individual distal muscles acting on the wrist and digits were retained. Majungasaurus shows some signs of the advanced stages of forelimb reduction preceding limb loss, while also exhibiting features suggesting that the forelimb was not completely functionless. The conformation of abelisaurid forelimb musculature was unique among theropods and further emphasizes the unusual morphology of the forelimbs in this clade.
Collapse
Affiliation(s)
- Sara H Burch
- Department of Biology, SUNY Geneseo, Geneseo, New York, USA
| |
Collapse
|
7
|
Huang AH. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev Biol 2017; 429:420-428. [PMID: 28363737 DOI: 10.1016/j.ydbio.2017.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments.
Collapse
Affiliation(s)
- Alice H Huang
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, United States.
| |
Collapse
|
8
|
Rothier PS, Brandt R, Kohlsdorf T. Ecological associations of autopodial osteology in Neotropical geckos. J Morphol 2017; 278:290-299. [DOI: 10.1002/jmor.20635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Priscila S. Rothier
- Department of Biology; FFCLRP/USP, Universidade de São Paulo; Ribeirão Preto SP 14040-901 Brazil
| | - Renata Brandt
- Department of Biology; FFCLRP/USP, Universidade de São Paulo; Ribeirão Preto SP 14040-901 Brazil
| | - Tiana Kohlsdorf
- Department of Biology; FFCLRP/USP, Universidade de São Paulo; Ribeirão Preto SP 14040-901 Brazil
| |
Collapse
|
9
|
Regnault S, Hutchinson JR, Jones MEH. Sesamoid bones in tuatara (Sphenodon punctatus) investigated with X-ray microtomography, and implications for sesamoid evolution in Lepidosauria. J Morphol 2016; 278:62-72. [PMID: 27882577 PMCID: PMC6680162 DOI: 10.1002/jmor.20619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022]
Abstract
Sesamoids bones are small intra-tendinous (or ligamentous) ossifications found near joints and are often variable between individuals. Related bones, lunulae, are found within the menisci of certain joints. Several studies have described sesamoids and lunulae in lizards and their close relatives (Squamata) as potentially useful characters in phylogenetic analysis, but their status in the extant outgroup to Squamata, tuatara (Sphenodon), remains unclear. Sphenodon is the only living rhynchocephalian, but museum specimens are valuable and difficult to replace. Here, we use non-destructive X-ray microtomography to investigate the distribution of sesamoids and lunulae in 19 Sphenodon specimens and trace the evolution of these bones in Lepidosauria (Rhynchocephalia + Squamata). We find adult Sphenodon to possess a sesamoid and lunula complement different from any known squamate, but also some variation within Sphenodon specimens. The penultimate phalangeal sesamoids and tibial lunula appear to mineralize prior to skeletal maturity, followed by mineralization of a sesamoid between metatarsal I and the astragalocalcaneum (MTI-AC), the palmar sesamoids, and tibiofemoral lunulae around attainment of skeletal maturity. The tibial patella, ulnar, and plantar sesamoids mineralize late in maturity or variably. Ancestral state reconstruction indicates that the ulnar patella and tibiofemoral lunulae are synapomophies of Squamata, and the palmar sesamoid, tibial patella, tibial lunula, and MTI-AC may be synapomorphies of Lepidosauria. J. Morphol. 278:62-72, 2017. ©© 2016 Wiley Periodicals,Inc.
Collapse
Affiliation(s)
- Sophie Regnault
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - John R Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Marc E H Jones
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Herpetology, South Australian Museum, North Terrace, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
10
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Diogo R, Smith CM, Ziermann JM. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn 2015; 244:1357-74. [DOI: 10.1002/dvdy.24336] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC
| | | | - Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC
| |
Collapse
|