1
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
2
|
Liu Z, Niu Y, Fu Z, Dean M, Fu Z, Hu Y, Zou Z. 3D relationship between hierarchical canal network and gradient mineralization of shark tooth osteodentin. Acta Biomater 2023; 168:185-197. [PMID: 37451657 DOI: 10.1016/j.actbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Osteodentin is a dominant mineralized collagenous tissue in the teeth of many fishes, with structural and histological characteristics resembling those of bone. Osteodentin, like bone, comprises osteons as basic structural building blocks, however, it lacks the osteocytes and the lacuno-canalicular network (LCN), which are known to play critical roles in controlling the mineralization of the collagenous matrix in bone. Although numerous vascular canals exist in osteodentin, their role in tooth maturation and the matrix mineralization process remain poorly understood. Here, high resolution micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM) were used to obtain 3D structural information of osteodentin in shark teeth at multiple scales. We observed a complex 3D network of primary canals with a diameter ranging from ∼10 µm to ∼120 µm, where the canals are surrounded by osteon-like concentric layers of lamellae, with 'interosteonal' tissue intervening between neighboring osteons. In addition, numerous hierarchically branched secondary canals extended radially from the primary canals into the interosteonal tissue, decreasing in diameter from ∼10 µm to hundreds of nanometers. Interestingly, the mineralization degree increases from the periphery of primary canals into the interosteonal tissue, suggesting that mineralization begins in the interosteonal tissue. Correspondingly, the hardness and elastic modulus of the interosteonal tissue are higher than those of the osteonal tissue. These results demonstrate that the 3D hierarchical canal network is positioned to play a critical role in controlling the gradient mineralization of osteodentin, also providing valuable insight into the formation of mineralized collagenous tissue without osteocytes and LCN. STATEMENT OF SIGNIFICANCE: Bone is a composite material with versatile mechanical properties. Osteocytes and their lacuno-canalicular network (LCN) are known to play critical roles during formation of human bone. However, the bone and osteodentin of many fishes, although lacking osteocytes and LCN, exhibit similar osteon-like structure and mechanical functions. Here, using various high resolution 3D characterization techniques, we reveal that the 3D network of primary canals and numerous hierarchically branched secondary canals correlate with the mineralization gradient and micromechanical properties of osteonal and interosteonal tissues of shark tooth osteodentin. This work significantly improves our understanding of the construction of bone-like mineralized tissue without osteocytes and LCN, and provides inspirations for the fabrication of functional materials with hierarchical structure.
Collapse
Affiliation(s)
- Zhuanfei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yunya Niu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Mason Dean
- Department of Infectious Diseases & Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yongming Hu
- School of Microelectronics, Hubei University, Wuhan 430062, Hubei, China..
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.; Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China.
| |
Collapse
|
3
|
Li T, Yongfeng L, Ruiqi L, Mingyue Z, Xiaofeng H. Development and structural characteristics of pseudoosteodentine in the Pacific cutlassfish, Trichiurus lepturus. Tissue Cell 2022; 77:101847. [DOI: 10.1016/j.tice.2022.101847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
|
4
|
Türtscher J, Jambura PL, López‐Romero FA, Kindlimann R, Sato K, Tomita T, Kriwet J. Heterodonty and ontogenetic shift dynamics in the dentition of the tiger shark
Galeocerdo cuvier
(Chondrichthyes, Galeocerdidae). J Anat 2022; 241:372-392. [PMID: 35428996 PMCID: PMC9296035 DOI: 10.1111/joa.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022] Open
Abstract
The lifelong tooth replacement in elasmobranch fishes (sharks, rays and skates) has led to the assemblage of a great number of teeth from fossil and extant species, rendering tooth morphology an important character for taxonomic descriptions, analysing phylogenetic interrelationships and deciphering their evolutionary history (e.g. origination, divergence, extinction). Heterodonty (exhibition of different tooth morphologies) occurs in most elasmobranch species and has proven to be one of the main challenges for these analyses. Although numerous shark species are discovered and described every year, detailed descriptions of tooth morphologies and heterodonty patterns are lacking or are only insufficiently known for most species. Here, we use landmark‐based 2D geometric morphometrics on teeth of the tiger shark Galeocerdo cuvier to analyse and describe dental heterodonties among four different ontogenetic stages ranging from embryo to adult. Our results reveal rather gradual and subtle ontogenetic shape changes, mostly characterized by increasing size and complexity of the teeth. We furthermore provide the first comprehensive description of embryonic dental morphologies in tiger sharks. Also, tooth shapes of tiger sharks in different ontogenetic stages are re‐assessed and depicted in detail. Finally, multiple cases of tooth file reversal are described. This study, therefore, contributes to our knowledge of dental traits across ontogeny in the extant tiger shark G. cuvier and provides a baseline for further morphological and genetic studies on the dental variation in sharks. Therefore, it has the potential to assist elucidating the underlying developmental and evolutionary processes behind the vast dental diversity observed in elasmobranch fishes today and in deep time. Using 2D geometric morphometrics, we examined the tooth morphology and heterodonty patterns across ontogeny in extant tiger sharks. Examining tiger sharks in different ontogenetic stages allowed us to provide detailed descriptions of intraspecific tooth variations and to confirm a weak ontogenetic heterodonty in this species.
Collapse
Affiliation(s)
- Julia Türtscher
- Faculty of Earth Sciences, Geography and Astronomy Department of Palaeontology University of Vienna Vienna Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna Vienna Austria
| | - Patrick L. Jambura
- Faculty of Earth Sciences, Geography and Astronomy Department of Palaeontology University of Vienna Vienna Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna Vienna Austria
| | - Faviel A. López‐Romero
- Faculty of Earth Sciences, Geography and Astronomy Department of Palaeontology University of Vienna Vienna Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna Vienna Austria
| | - René Kindlimann
- Haimuseum und Sammlung R. Kindlimann Aathal‐Seegräben Switzerland
| | - Keiichi Sato
- Okinawa Churashima Research Center Okinawa Churashima Foundation Motobu‐cho Okinawa Japan
- Okinawa Churaumi Aquarium Okinawa Churashima Foundation Motobu‐cho Okinawa Japan
| | - Taketeru Tomita
- Okinawa Churashima Research Center Okinawa Churashima Foundation Motobu‐cho Okinawa Japan
- Okinawa Churaumi Aquarium Okinawa Churashima Foundation Motobu‐cho Okinawa Japan
| | - Jürgen Kriwet
- Faculty of Earth Sciences, Geography and Astronomy Department of Palaeontology University of Vienna Vienna Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna Vienna Austria
| |
Collapse
|
5
|
Maidment SCR, Strachan SJ, Ouarhache D, Scheyer TM, Brown EE, Fernandez V, Johanson Z, Raven TJ, Barrett PM. Bizarre dermal armour suggests the first African ankylosaur. Nat Ecol Evol 2021; 5:1576-1581. [PMID: 34556830 DOI: 10.1038/s41559-021-01553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022]
Abstract
Ankylosauria is a diverse clade of armoured dinosaurs whose members were important constituents of many Cretaceous faunas. Phylogenetic analyses imply that the clade diverged from its sister taxon, Stegosauria, during the late Early Jurassic, but the fossil records of both clades are sparse until the Late Jurassic (~150 million years ago). Moreover, Ankylosauria is almost entirely restricted to former Laurasian continents, with only a single valid Gondwanan taxon. Spicomellus afer gen. et sp. nov. appears to represent the earliest-known ankylosaur and the first to be named from Africa, from the Middle Jurassic (Bathonian-Callovian) of Morocco, filling an important gap in dinosaur evolution. The specimen consists of a rib with spiked dermal armour fused to its dorsal surface, an unprecedented morphology among extinct and extant vertebrates. The specimen reveals an unrealized morphological diversity of armoured dinosaurs during their early evolution, and implies the presence of an important but undiscovered Gondwanan fossil record.
Collapse
Affiliation(s)
- Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, London, UK. .,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Sarah J Strachan
- Department of Earth Sciences, University College London, London, UK
| | - Driss Ouarhache
- GERA Laboratory, Faculty of Sciences Dhar El Mahraz, SMBA University, Fez, Morocco
| | - Torsten M Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Emily E Brown
- Department of Earth Sciences, Natural History Museum, London, UK.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Thomas J Raven
- Department of Earth Sciences, Natural History Museum, London, UK.,School of Environment and Technology, University of Brighton, Brighton, UK
| | - Paul M Barrett
- Department of Earth Sciences, Natural History Museum, London, UK.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Jambura PL, Stumpf S, Kriwet J. Skeletal remains of the oldest known pseudocoracid shark Pseudocorax kindlimanni sp. nov. (Chondrichthyes, Lamniformes) from the Late Cretaceous of Lebanon. CRETACEOUS RESEARCH 2021; 125:104842. [PMID: 34642522 PMCID: PMC7611798 DOI: 10.1016/j.cretres.2021.104842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new fossil mackerel shark, Pseudocorax kindlimanni sp. nov. (Lamniformes, Pseudocoracidae), is described from the Cenomanian Konservat-Lagerstätte of Haqel, Lebanon. The new species is based on the most complete fossil of this group to date, which comprises an associated tooth set of 70 teeth, six articulated vertebral centra, numerous placoid scales and pieces of unidentifiable mineralized cartilage. The dentition of P. kindlimanni sp. nov. is marked by a high degree of monognathic heterodonty but does not exhibit the characteristic "lamnoid tooth pattern" known from other macrophagous lamniform sharks. In addition, P. kindlimanni sp. nov. shows differences in tooth microstructure and vertebral centrum morphology compared to other lamniform sharks. These variations, however, are also known from other members of this order and do not warrant the assignment of Pseudocorax outside the lamniform sharks. The new fossil is the oldest known pseudocoracid shark and pushes the origin of this group back into the Cenomanian, a time when lamniform sharks underwent a major diversification. This radiation resulted not only in high species diversity, but also in the development of a diverse array of morphological traits and adaptation to different ecological niches. Pseudocorax kindlimanni sp. nov. was a small, active predator capable of fast swimming, and it occupied the lower trophic levels of the marine food web in the Late Cretaceous.
Collapse
|
7
|
Moyer JK, Finucci B, Riccio ML, Irschick DJ. Dental morphology and microstructure of the Prickly Dogfish Oxynotus bruniensis (Squaliformes: Oxynotidae). J Anat 2020; 237:916-932. [PMID: 32539172 DOI: 10.1111/joa.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
This study describes and illustrates the jaws, teeth, and tooth microstructure of the Prickly Dogfish Oxynotus bruniensis. Detailed accounts of the dental morphology of O. bruniensis are rare and have not addressed the tissue arrangement or microstructure of the teeth. These features are documented and discussed in the contexts of interspecific comparisons with other elasmobranchs and the dietary specialization of O. bruniensis. The overall tooth morphology of O. bruniensis is similar to those of other closely related members in the order Squaliformes, as is the tissue arrangement, or histotype. Oxynotus bruniensis exhibits a simplified enameloid microstructure, which we compare with previously documented enameloid microstructures of other elasmobranchs. Though subtle interspecific differences in dental characters are documented, neither overall tooth morphology nor histotype and microstructure are unique to O. bruniensis. We conclude that in the case of O. bruniensis, dietary specialization is facilitated by behavioral rather than morphological specialization.
Collapse
Affiliation(s)
- Joshua K Moyer
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | | | - Duncan J Irschick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
8
|
Jambura PL, Türtscher J, Kindlimann R, Metscher B, Pfaff C, Stumpf S, Weber GW, Kriwet J. Evolutionary trajectories of tooth histology patterns in modern sharks (Chondrichthyes, Elasmobranchii). J Anat 2019; 236:753-771. [PMID: 31867732 PMCID: PMC7163786 DOI: 10.1111/joa.13145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 11/28/2022] Open
Abstract
During their evolutionary history, modern sharks developed different tooth mineralization patterns that resulted in very distinct histological patterns of the tooth crown (histotypes). To date, three different tooth histotypes have been distinguished: (i) orthodont teeth, which have a central hollow pulp cavity in the crown, encapsulated by a prominent layer of dentine (orthodentine); (ii) pseudoosteodont teeth, which have their pulp cavities secondarily replaced by a dentinal core of porous dentine (osteodentine), encased by orthodentine; and (iii) osteodont teeth, which lack orthodentine and the whole tooth crown of which consists of osteodentine. The aim of the present study was to trace evolutionary trends of tooth mineralization patterns in modern sharks and to find evidence for the presence of phylogenetic or functional signals. High resolution micro‐computed tomography images were generated for the teeth of members of all nine extant shark orders and the putative stem group †Synechodontiformes, represented here by three taxa, to examine the tooth histology non‐destructively. Pseudoosteodonty is the predominant state among modern sharks and represents unambiguously the plesiomorphic condition. Orthodonty evolved several times independently in modern sharks, while the osteodont tooth histotype is only developed in lamniform sharks. The two shark orders Heterodontiformes and Pristiophoriformes showed highly modified tooth histologies, with Pristiophorus exhibiting a histology only known from batomorphs (i.e. rays and skates), and Heterodontus showing a histological difference between anterior and posterior teeth, indicating a link between its tooth morphology, histology and durophagous lifestyle. The tooth histotype concept has proven to be a useful tool to reflect links between histology, function and its taxonomic value for distinct taxa; however, a high degree of variation, especially in the pseudoosteodont tooth histotype, demonstrates that the current histotype concept is too simplistic to fully resolve these relationships. The vascularization pattern of the dentine might offer new future research pathways for better understanding functional and phylogenetic signals in the tooth histology of modern sharks.
Collapse
Affiliation(s)
| | - Julia Türtscher
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - René Kindlimann
- Haimuseum und Sammlung R. Kindlimann, Aathal-Seegräben, Switzerland
| | - Brian Metscher
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Sebastian Stumpf
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Core Facility for Micro-Computed Tomography, University of Vienna, Vienna, Austria
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Micro-computed tomography imaging reveals the development of a unique tooth mineralization pattern in mackerel sharks (Chondrichthyes; Lamniformes) in deep time. Sci Rep 2019; 9:9652. [PMID: 31273249 PMCID: PMC6609643 DOI: 10.1038/s41598-019-46081-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
The cartilaginous fishes (Chondrichthyes) have a rich fossil record which consists mostly of isolated teeth and, therefore, phylogenetic relationships of extinct taxa are mainly resolved based on dental characters. One character, the tooth histology, has been examined since the 19th century, but its implications on the phylogeny of Chondrichthyes is still in debate. We used high resolution micro-CT images and tooth sections of 11 recent and seven extinct lamniform sharks to examine the tooth mineralization processes in this group. Our data showed similarities between lamniform sharks and other taxa (a dentinal core of osteodentine instead of a hollow pulp cavity), but also one feature that has not been known from any other elasmobranch fish: the absence of orthodentine. Our results suggest that this character resembles a synapomorphic condition for lamniform sharks, with the basking shark, Cetorhinus maximus, representing the only exception and reverted to the plesiomorphic tooth histotype. Additionally, †Palaeocarcharias stromeri, whose affiliation still is debated, shares the same tooth histology only known from lamniform sharks. This suggests that †Palaeocarcharias stromeri is member of the order Lamniformes, contradicting recent interpretations and thus, dating the origin of this group back at least into the Middle Jurassic.
Collapse
|
10
|
Jambura PL, Pfaff C, Underwood CJ, Ward DJ, Kriwet J. Tooth mineralization and histology patterns in extinct and extant snaggletooth sharks, Hemipristis (Carcharhiniformes, Hemigaleidae)-Evolutionary significance or ecological adaptation? PLoS One 2018; 13:e0200951. [PMID: 30089138 PMCID: PMC6082511 DOI: 10.1371/journal.pone.0200951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 12/02/2022] Open
Abstract
Shark jaws exhibit teeth that are arranged into distinct series and files and display great diversities in shapes and structures, which not only is related to their function (grasping, cutting, crushing) during feeding, but also bear a strong phylogenetic signal. So far, most research on the relationship between shark teeth and feeding ecology and systematics focused on the external tooth morphology only. Although the tooth histology of sharks has been examined since the early 19th century, its functional and systematic implications are still ambiguous. Shark teeth normally consist of either a porous, cellular dentine, osteodentine (in lamniform sharks and some batoids) or a dense layer of orthodentine (known from different sharks). Sharks of the order Carcharhiniformes, comprising ca. 60% of all extant shark species, are known to have orthodont teeth, with a single exception—the snaggletooth shark, Hemipristis elongata. High resolution micro-CT images of jaws and teeth from selected carcharhiniform sharks (including extant and fossil snaggletooth sharks) and tooth sections of teeth of Hemipristis, other carcharhiniform and lamniform sharks, have revealed that (1) Hemipristis is indeed the only carcharhiniform shark filling its pulp cavity with osteodentine in addition to orthodentine, (2) the tooth histology of Hemipristis elongata differs from the osteodont histotype, which evolved in lamniform sharks and conversely represents a modified orthodonty, and (3) this modified orthodonty was already present in extinct Hemipristis species but the mineralization sequence has changed over time. Our results clearly show the presence of a third tooth histotype—the pseudoosteodont histotype, which is present in Hemipristis. The unique tooth histology of lamniform sharks might provide a phylogenetic signal for this group, but more research is necessary to understand the phylogenetic importance of tooth histology in sharks in general.
Collapse
Affiliation(s)
- Patrick L. Jambura
- Department of Palaeontology, University of Vienna, Vienna, Austria
- * E-mail:
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Charlie J. Underwood
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London, United Kingdom
| | - David J. Ward
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|