1
|
Dittman AH, May D, Johnson MA, Baldwin DH, Scholz NL. Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch). J Exp Biol 2024; 227:jeb247786. [PMID: 39238479 DOI: 10.1242/jeb.247786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc A Johnson
- Oregon Department of Fish and Wildlife Corvallis Research Laboratory, 28655 Highway 34, Corvallis, OR 97333, USA
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| |
Collapse
|
2
|
Ogihara A, Abe T, Shimoda K, Sasaki T, Kudo H. Messenger RNA transcription levels of neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex components in the olfactory nerve system of the anadromous Pacific salmon, masu salmon Oncorhynchus masou. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1635-1650. [PMID: 38775866 DOI: 10.1007/s10695-024-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024]
Abstract
Anadromous Pacific salmon (genus Oncorhynchus) are known for homing behavior to their natal rivers based on olfactory imprinted memories during seaward migration. The SNARE complex is a regulator of vesicle exocytosis from the presynaptic membrane. Our previous study suggested that its component genes (Snap25, Stx1, and Vamp2) are more highly expressed in the olfactory nervous system (ONS) during the migration stages associated with olfactory imprinting in the evolutionary species of Pacific salmon, such as chum (O. keta) and pink (O. gorbuscha) salmon. Masu salmon (O. masou) has a significantly different life history from these species, living longer in rivers and being a more primitive Pacific salmon species. In this study, the transcription of snare mRNAs in the ONS was analyzed using mainly male wild masu salmon. Five cDNAs encoding masu salmon SNAREs, which are well conserved among vertebrates, were isolated and sequenced. Each snare mRNA was highly expressed in age 1+ (yearling) parr prior to smoltification, particularly in the olfactory bulb. Their transcription status was significantly different from that of chum and pink salmon, which showed high expression in earlier under-yearling juveniles. The present results and our previous studies indicate that snare mRNAs are highly transcripted until the seaward migration, reflecting neural development and neuroplasticity of the ONS for olfactory imprinting.
Collapse
Affiliation(s)
- Atsushi Ogihara
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Takashi Abe
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutaka Shimoda
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Hokkaido, Japan
| | - Takafumi Sasaki
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Hideaki Kudo
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
3
|
Ward RH, Quinn TP, Dittman AH, Yopak KE. The Effects of Rearing Environment on Organization of the Olfactory System and Brain of Juvenile Sockeye Salmon, Oncorhynchus nerka. Integr Comp Biol 2024; 64:92-106. [PMID: 38373826 DOI: 10.1093/icb/icae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Pacific salmon (Oncorhynchus spp.) hatch and feed in freshwater habitats, migrate to sea to mature, and return to spawn at natal sites. The final, riverine stages of the return migrations are mediated by chemical properties of the natal stream that they learned as juveniles. Like some other fish, salmon growth is asymptotic; they grow continuously throughout life toward a maximum size. The continued growth of the nervous system may be plastic in response to environmental variables. Due to the ecological, cultural, and economic importance of Pacific salmon, individuals are often reared in hatcheries and released into the wild as juveniles to supplement natural populations. However, hatchery-reared individuals display lower survivorship and may also stray (i.e., spawn in a non-natal stream) at higher rates than their wild counterparts. Hatchery environments may lack stimuli needed to promote normal development of the nervous system, thus leading to behavioral deficits and a higher incidence of straying. This study compared the peripheral olfactory system and brain organization of hatchery-reared and wild-origin sockeye salmon fry (Oncorhynchus nerka). Surface area of the olfactory rosette, diameter of the olfactory nerve, total brain size, and size of major brain regions were measured from histological sections and compared between wild and hatchery-origin individuals. Hatchery-origin fish had significantly larger optic tecta, and marginally insignificant, yet noteworthy trends, existed in the valvula cerebelli (hatchery > wild) and olfactory bulbs (hatchery < wild). We also found a putative difference in olfactory nerve diameter (dmin) (hatchery > wild), but the validity of this finding needs further analyses with higher resolution methods. Overall, these results provide insight into the potential effects of hatchery rearing on nervous system development in salmonids, and may explain behavioral deficits displayed by hatchery-origin individuals post-release.
Collapse
Affiliation(s)
- Russell H Ward
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA
| | - Kara E Yopak
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
4
|
Hu B, Wang JJ, Jin C. In vivo odorant input induces spike timing-dependent plasticity of glutamatergic synapses in developing zebrafish olfactory bulb. Biochem Biophys Res Commun 2020; 526:532-538. [PMID: 32245615 DOI: 10.1016/j.bbrc.2020.03.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 01/24/2023]
Abstract
Early odorant experience and neural activity are essential for refining developing neural connections. Although neural activity-induced synaptic plasticity is one of the most important cellular mechanisms underlying the refinement of neural circuits, whether and how natural odorant experience induces long-term plasticity in the olfactory bulb remains unknown. In vivo perforated whole-cell recording from mitral cells (MCs) in larval zebrafish showed that odorant experience induced persistent modification of developing olfactory bulb circuits via spike timing-dependent plasticity (STDP). Repetitive odorant stimuli paired with postsynaptic spiking in a critical time window (pre-post, positive timing) resulted in persistent enhancement of glutamatergic inputs from olfactory sensory neurons, but long-term depression within the opposite time window (post-pre, negative timing). Furthermore, spike-timing-dependent potentiation (tLTP) in STDP induced by repetitive odorant stimulation had similar cellular processes to those of electrical stimulation-induced tLTP. Finally, odorant input induced STDP required the activation of postsynaptic N-methyl-d-aspartate receptors (NMDARs). Thus, the NMDAR is likely to be a postsynaptic coincidence detector responsible for the sensory experience-dependent refinement of developing connections.
Collapse
Affiliation(s)
- Bin Hu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, 221004, China; Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, 211166, China.
| | - Jing-Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, 211166, China
| | - Chen Jin
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, 221004, China
| |
Collapse
|
5
|
Gerlach G, Tietje K, Biechl D, Namekawa I, Schalm G, Sulmann A. Behavioural and neuronal basis of olfactory imprinting and kin recognition in larval fish. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb189746. [PMID: 30728237 DOI: 10.1242/jeb.189746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Imprinting is a specific form of long-term memory of a cue acquired during a sensitive phase of development. To ensure that organisms memorize the right cue, the learning process must happen during a specific short time period, mostly soon after hatching, which should end before irrelevant or misleading signals are encountered. A well-known case of olfactory imprinting in the aquatic environment is that of the anadromous Atlantic and Pacific salmon, which prefer the olfactory cues of natal rivers to which they return after migrating several years in the open ocean. Recent research has shown that olfactory imprinting and olfactory guided navigation in the marine realm are far more common than previously assumed. Here, we present evidence for the involvement of olfactory imprinting in the navigation behaviour of coral reef fish, which prefer their home reef odour over that of other reefs. Two main olfactory imprinting processes can be differentiated: (1) imprinting on environmental cues and (2) imprinting on chemical compounds released by kin, which is based on genetic relatedness among conspecifics. While the first process allows for plasticity, so that organisms can imprint on a variety of chemical signals, the latter seems to be restricted to specific genetically determined kin signals. We focus on the second, elucidating the behavioural and neuronal basis of the imprinting process on kin cues using larval zebrafish (Danio rerio) as a model. Our data suggest that the process of imprinting is not confined to the central nervous system but also triggers some changes in the olfactory epithelium.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129 Oldenburg, Germany.,Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, QLD 4811, Australia
| | - Kristin Tietje
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Daniela Biechl
- Graduate School of Systemic Neurosciences & Department Biology II, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| | - Iori Namekawa
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregor Schalm
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Astrid Sulmann
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Molecular characterization and gene expression of syntaxin-1 and VAMP2 in the olfactory organ and brain during both seaward and homeward migrations of chum salmon, Oncorhynchus keta. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:39-50. [DOI: 10.1016/j.cbpa.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|